Sets

Set Definition:

A set is any collection of objects. If a set is finite and not too large, we can describe it by listing all of its elements. For example, the equation:
\[A = \{1, 2, 3, 4\} \]
Describes a set A made up of four elements 1, 2, 3, and 4.

\[B = \{\text{blue, red, yellow}\} \]
Describes a set B made up of three elements blue, red, yellow.

\[C = \{a, b, c, f\} \]
Describes a set C made up of four elements a, b, c, f.

A set is determined by its elements and not by any order in which these elements are listed, so we can define \(A = \{2, 4, 3, 1\} \).

The elements making up the set are assumed distinct and not repeated. Therefore, the set \(\{1, 2, 3, 2, 4\} \) is the same as \(\{1, 2, 3, 4\} \).

If the set is large or an infinite set, we describe it by listing the property necessary for membership:
\[B = \{x | x \text{ is a positive, even integer}\} \]
Describes the set B made up of all positive even integer.
The vertical bar \(| \) is read *such that*, so the equation is read: **B equals the set of all x such that x is a positive, even integer**.

\[B = \{x \mid x \text{ is a student enrolled in CS124}\} \]

\[C = \{x \mid x \text{ is an alphabetical letter}\} = \{a, b, c, d, e, \ldots, z\} \]
Elements in X:

Given a set X, in which all elements are listed, we determine if an element a belongs to X by simply looking if a appears or not in the listing.

If the set X is described by a property, we check to see whether a satisfies the property for the elements of X. If a verifies the property we say that \(a \in X \), if a does not verify the property then we say that \(a \not\in X \).

For example if \(a = 1 \), \(a \in A \), but \(a \not\in B \)

Cardinality of a set:
If \(x \) is a finite set, we define the cardinality of \(X \), noted \(|X| \) as the number of elements in \(X \).

\(|A| = 4\),
\(B \) is not a finite set, so it does not apply

The empty set:
The set with no elements is called the empty (or null or void) set and is denoted as \(\emptyset \). \(\emptyset = \{\} \)

For example :
\(Z = \{x\mid x \) is an even number and \(x \) is an odd number\}\)
\(Z = \emptyset \), because there are no elements which satisfy this condition.
Set Equality:

Two sets X and Y are equal and we write $X = Y$ if X and Y have the same elements.

Corollary:
$X = Y \iff \forall x \in X \rightarrow x \in Y$ and $\forall x \in Y \rightarrow x \in X$

For example:
$A = \{ x \mid x^2 - x = 0 \}, B = \{0, 1\}$

$x (x+1) = 0$

$x = 0, x -1 = 0, x= 1$, so $A = B$

Subset:
Suppose that X and Y are sets. If every element of X is an element of Y, we say that X is a subset of Y and we write $X \subseteq Y$.

For example
If $C = \{1, 3\}$ and $A = \{1, 2, 3, 4\}$, then $C \subseteq A$

Any set X is a subset of itself, since any element in X is in X.

If X is a subset of Y and X does not equal Y, we say that X is a proper subset of Y

Any set is a subset of itself, since any element in X is in X.

Proper Subset:

If X is a subset of Y and X does not equal Y, we say that X is a proper subset of Y and we write it:

$X \subset Y$

For $C = \{1, 3\}$ and $A = \{1, 2, 3, 4\}$, $C \subset A$

The empty set is a subset of every set.
Union of 2 sets:
Given two sets X and Y, the set

$$X \cup Y = \{x \mid x \in X \text{ or } x \in Y\}$$

Is called the union of X and Y. The union consists of all elements belonging to either X or Y (or both).

$A = \{1, 3, 5\}$ and $B = \{4, 5, 6\}$

$A \cup B = \{1, 3, 4, 5, 6\}$

Intersection of 2 sets:
Given two sets X and Y, the set:

$$X \cap Y = \{x \mid x \in X \text{ and } x \in Y\}$$

Is called the intersection of X and Y. The intersection consists of all elements belonging to both X and Y.

$A \cap B = \{5\}$

The sets X and Y are called disjoint if $X \cap Y = \emptyset$

A and B are not disjoint.

Pairwise disjoint:
A collection of sets S is said to be pairwise disjoint if whenever X and Y are distinct sets in S, X and Y are disjoint.

$S = \{\{1,3,4\}, \{5\}, \{2,6\}, \{7,8\}\}$ is pairwise disjoint.
The difference of 2 sets:

Given two sets X and Y, the set:

\[X - Y = \{ x | x \in X \text{ and } x \notin Y \} \]

is called the difference (or relative complement).

The difference \(X - Y \) consists of all elements in X that are not in Y.

A- \(B = \{1, 3\} \)

B- \(A = \{4, 6\} \)

Power set:

The set of all subsets of a set X, denoted \(\wp(X) \) is called power set of X.

Example:

If \(A = \{a, b, c\} \), the members of \(\wp(A) \) are:

\(\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\} \)

All but \(\{a, b, c\} \) are proper subsets of A.

For this example
\[|A| = 3, |\wp(A)| = 2^3 = 8 \]

Theorem:

a- If \(|X| = n \), then \(|\wp(X)| = 2^n \)

We will give a proof using mathematical induction that the power set of a set with n elements has \(2^n \) elements.

The proof is by induction on n
Basis step:

If \(n = 0 \), \(X \) is the empty set, the only subset of the empty set is the empty set itself; thus
\[
|\mathcal{P}(X_0)| = 1 = 2^0 = 2^n
\]

Assume that (a) holds for \(n \):
For \(|X| = n \), \(|\mathcal{P}(X_n)| = 2^n \)

Let \(X_1, X_2, \ldots, X_k \), be the subsets of \(X \)

Let’s add \(\{a\} \) to \(X \), so that \(|X_{n+1}| = n + 1 \)
We form new subsets of \(X \) that include \(a \) by adding \(a \) to all the old subsets that did not include \(a \):
\[
X_1 \cup \{a\}, X_2 \cup \{a\}, \ldots, X_k \cup \{a\}
\]
The number of subsets that include \(a \) is that same as the number of subsets that do not include \(a \).

Thus the subsets of \(X_{n+1} \) are
\[
X_1, X_2, \ldots, X_k, X_1 \cup \{a\}, X_2 \cup \{a\}, \ldots, X_k \cup \{a\}
\]
And their number is \(|\mathcal{P}(X_{n+1})| = 2 \cdot |\mathcal{P}(X_n)| = 2^n \cdot 2 = 2^{n+1} \)

For example \(n=2 \) \(X_2 = \{1, 2\} \)
\[
\mathcal{P}(X_2) = \{\}, \{1\}, \{2\}, \{1, 2\}
\]

Let’s have \(n=3 \) \(X_3 = \{1, 2, 3\} \)
\[
\mathcal{P}(X_3) = \{\}, \{1\}, \{2\}, \{1, 2\}, \{3\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}
\]

The universal Set:
We define the universal set \(U \) or a universe \(U \).
All sets are subsets of the Universal set U.

Complement:

Given a universal set U and a subset X, the set $U - X$ is called the complement of X and is noted \overline{X}

Let $A = \{1, 3, 5\}$ and $U = \{1, 2, 3, 4, 5\}$, then $\overline{A} = \{2, 4\}$

If $U = \{1, 2, 3, 5, 6, 7\}$, $\overline{A} = \{2, 6, 7\}$, the complement \overline{A} depends on the universe U.

Venn Diagrams:
Venn diagrams provide pictorial view of sets.
In a Venn diagram, a rectangle depicts a universal set. Subsets of the universal set are drawn as circles. The inside of a circle represents the members of that set.
Let U be a universal set and let A, B, C be subsets of U. The following properties hold:

1- Associative laws:

$$(A \cup B) \cup C = A \cup (B \cup C)$$
$$(A \cap B) \cap C = A \cap (B \cap C)$$

2- Commutative laws:

$$A \cup B = B \cup A$$
$$A \cap B = B \cap A$$

3- Distributive laws:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

4- Identity Laws:

$$A \cup \emptyset = A$$
$$A \cap U = A$$

5- Complement Laws:

$$A \cup \overline{A} = U$$
$$A \cap \overline{A} = \emptyset$$

6- Idempotent Laws:

$$A \cup A = A$$
$$A \cap A = A$$

7- Bound Laws:

$$A \cup U = U$$
$$A \cap \emptyset = \emptyset$$
8- Absorption Law:
\[A \cup (A \cap B) = A \]
\[A \cap (A \cup B) = A \]

9- Involution Law:
\[\overline{A} = A \]

10- 0/1 Laws:
\[\overline{U} = \emptyset \]
\[\overline{\emptyset} = U \]

11- De Morgan’s law for sets:
\[(A \cup B) = A \cap B \]
\[(A \cap B) = A \cup B \]

Proof for 6:

By the definition of the equality of sets, we need to prove that
\[\forall x \ [x \in A \cap (B \cup C) \text{ if and only if } x \in (A \cap B) \cup (A \cap C)] \]

For that we need to show that for an arbitrary element in the universe \(U \),
\[x \in A \cap (B \cup C) \text{ if and only if } x \in (A \cap B) \cup (A \cap C) \]

Here the *only if* part is going to be proven. The *if* part can be proven
\[x \in A \cup (B \cap C') \iff x \in A \lor x \in (B \cap C') \]
by the definition of ∪.

\[\Leftrightarrow x \in A \lor (x \in B \land x \in C) \]
by the definition of ∩.
\[\Leftrightarrow (x \in A \lor x \in B) \land (x \in A \lor x \in C) \]
by the distribution from the
equivalences of propositional logic.
\[\Leftrightarrow (x \in A \cup B) \land (x \in A \cup C) \]
by the definition of ∪.
\[\Leftrightarrow x \in (A \cup B) \cap (A \cup C) \]
by the definition of ∩.

Proof for 8: (a) If \(A \subseteq B \) then \(A \cup B = B \).
Let \(x \) be an arbitrary element in the universe.
\[x \in A \cup B \Leftrightarrow x \in A \lor x \in B \]
Then
\[A \subseteq B \Leftrightarrow x \in A \Rightarrow x \in B \]
Since
\[x \in B \Rightarrow x \in B \]
Also
\[x \in A \cup B \Rightarrow x \in B \]
Hence
\[A \cup B \subseteq B \]
Hence
\[B \subseteq A \cup B \]
Since (use "addition" rule), \(A \cup B = B \) follows.
(b) Similarly for \(A \cap B = A \).

Alternative proof:

These can also be proven using 8, 14, and 15. For example, (b) can be proven as follows:
First by 15 \(A \cap B \subseteq A \).
Then since \(A \subseteq A \), and \(A \subseteq B \), by 7 \(A \cap B \subseteq A \cap B \).
Since \(A \cap A = A \) by 3, \(A \subseteq A \cap B \).

Proof for 9: Let \(x \) be an arbitrary element in the universe.
\[[x \in A \cup (B - A)] \Leftrightarrow [x \in A \lor (x \in B \land x \notin A)] \]
Then
\[\Leftrightarrow [(x \in A \lor x \in B) \land (x \in A \lor x \notin A)] \]
\[\Leftrightarrow [(x \in A \lor x \in B) \land True] \]
\[\Leftrightarrow [x \in A \lor x \in B] \]

\[A \cup (B - A) = A \cup B \]

Hence \(A \cap (B - A) \neq \emptyset \).

Alternative proof

This can also be proven using set properties as follows.

\[A \cup (B - A) = A \cup (B \cap \overline{A}) \]
by the definition of \((B - A)\).
\[= (A \cup B) \cap (A \cup \overline{A}) \]
by the distribution.
\[= (A \cup B) \cap \emptyset \]
by 1.

Proof for 10: Suppose \(A \cap (B - A) \neq \emptyset \).

Then there is an element \(x \) that is in \(A \cap (B - A) \), i.e.
\[x \in A \land (x \in B \land x \notin A) \]
\[\Leftrightarrow (x \in A \land x \notin A) \land x \in B \]
\[\Leftrightarrow \emptyset \]
Hence \(A \cap (B - A) = \emptyset \) does not hold.
Hence \(A \cap (B - A) = \emptyset \).

This can also be proven in the similar manner to 9 above.

Proof for 11: Let \(x \) be an arbitrary element in the universe.
\[x \in A - (B \cup C) \Leftrightarrow x \in A \land x \notin B \cup C \]
Then
\[\Leftrightarrow x \in A \land \neg(x \in B \lor x \in C) \]
\[\Leftrightarrow x \in A \land (x \notin B \land x \notin C) \]
\[\Leftrightarrow (x \in A \land x \notin B) \land (x \in A \land x \notin C) \]
\[\Leftrightarrow x \in A - B \land x \in A - C \]
\[\iff x \in (A \cup B) \cap (A \cup C) \]

Hence

\[A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C) \]

Proof for 12:

(a) \[B \subseteq A \] and \[\overline{A} \subseteq B \]

Try to prove \[\iff x \notin A \] and \[x \in B \]

Let \(x \) be an arbitrary element in the universe.

Then if \[x \in B \] and \[x \notin A \]

Then \[x \in \overline{A} \]

Hence \[B \subseteq \overline{A} \]

If \[x \in \overline{A} \] and \[x \notin A \]

Then \[x \in A \cup B \]

Since \[x \in (A \cup B) \cup (A \cap \overline{A}) \]

must hold. Hence \[\overline{A} \subseteq B \]

Hence \[B = \overline{A} \]

(b) \[\iff x \in (U \setminus A) \] and \[x \in B \]

Since \[B = \overline{A} \]

Also \[A \cap B = A \cap (U \setminus A) \]

by 10 above.

Proof for 13:

Since \[\overline{A} \cup A = \overline{A} \cup A \]

Also since \[A \cap \overline{A} = \emptyset \]

Hence \(A \) satisfies the conditions for the complement of \(\overline{A} \).

Hence \[A = \overline{A} \].