
Regular Languages and Regular Expressions 
 

According to our definition, a language is regular if there exists a 
finite state automaton that accepts it. Therefore every regular 
language can be described by some nfa or dfa. 

 
Regular expressions: 
One way of describing regular languages is via the 
notation of regular expressions. 
This notation involves a combination of strings of symbols 
from some alphabet, parentheses and the operators +, ., 
and *. 
If ∑ is an alphabet, the regular expression ∑ describes the 
language consisting of all strings of length 1 over this 
alphabet and  ∑* describes the language consisting of all 
strings over that alphabet.  
 
Formal Definition of a Regular Expression: 
Let ∑ be a given alphabet, then: 

• ε, ∅, and a ∈ ∑ are all regular expressions.  
These are called primitive regular expressions. 

• if R1 and R2 are regular expressions , then  
o (R1 ∪ R2) or R1 + R2,  
o R1.R2,  
o R1* and 
o  (R1) are  also regular expressions 

• A string is a regular expression iff it can be derived 
from primitive regular expressions by a finite 
number of applications of the rules in 2 

 
In item 1 the regular expressions a and ε represent the 
languages {a}, and {ε}, respectively; the regular 
expression ∅ represents the empty language. 



In items 2,  the expressions represent the languages 
obtained by taking the union,  the concatenation of the 
languages R1 and R2 or the star of the language R1, 
respectively. 
Regular expressions are useful tools in the design of 
compilers for programming languages. 
 
Languages associated with Regular Expressions: 
Regular expressions can be used to describe some simple 
languages. If R is a regular expression, we will let L(R) 
denote the language associated with R. 
1. is a regular expression denoting the empty set  
2. ε is a regular expression denoting {ε} 
3. For every a ∈ ∑, a is a regular expression denoting {a}, 
if r1 and r2 are regular expressions,  then: 

a. L(r1 + r2) = L(r1) ∪ L(r2) 
b. L(r1.r2) = L(r1)L(r2) 
c. L((r1))=L(r1) 
d. L(r1*)=(L(r1))* 

 
Precedence of Regular Expressions Operators: 
Like any algebra, the regular-expression operators have an 
assumed order of “precedence”, which means that operators are 
associated with the operands in a particular order. The following 
is the order of precedence: 
1. The star operator is of the highest precedence.  
2. Next comes the dot or concatenation operator 
3. finally all the unions (+) are grouped with their operands. 
The expression 01* +1 is grouped (0(1)*) +1 
 
Write the language L(a*.(a+b)) in set notation 
L(a*.(a+b)) = L(a*)L(a+b) 
  = (L(a))*( L(a)∪L(b)) 
  = {ε, a,aa,aaa,….}{a,b} 



  = {a, aa,aaa, …, b, ab, aab,aaab,..} 
 
Write a regular expression for the set of strings that 
consists of alternating 0’s and 1’s.  
Let us first develop a regular expression for the language 
consisting of a single string 01. We can then use the star 
operator to get an expression of all strings of the form 
0101…01 
The basis rule for RE tells us that 0 and 1 are expressions 
denoting the languages {0} and {1}, respectively. If we 
concatenate the two expressions, we get a regular 
expression for the language {01}; this is the expression 01. 
Now, to get all strings consisting of zero or more 
occurrences of 01, we use the regular expression (01)* and 
get L(01)*. However this is not exactly what we want, 
since it only includes strings beginning with 0. To account 
for strings that start with 1 and strings that end with 0 or 
with 1: (01)* +(10)*+ 0 (10)*+ 1(01)* 
 
Regular expressions and Regular Languages 
The class R of regular languages over an alphabet ∑, has 
the following properties: 
i) The emptyset ∅ ∈ R, ε ∈ R  and if a ∈ ∑, then {a} ∈ R  
(ii) If s2 and s2 ∈ R, then s1 ∪ s2, s1.s2, s1* ∈ R 
(iii) Only sets formed using (i) and (ii) ∈ R 
 
Let S and T be subsets of ∑*, if S= T* then S is generated 
by T. 
If S is generated by T, then every element of S is the finite 
concatenation of elements of T.  
The elements in the concatenation forming a given word  
are not necessarily unique. 
Example:  



∑ = {a, b}, ∑* consists of the empty word and  all 
possible finite strings of the symbols a and b. 
T’={a, ab, b}, then ∑*= T’*. However, although every 
string in ∑* can be expressed uniquely as the 
concatenation of elements of ∑, this is not true of T’, since 
the expression abab can be expressed as: 
(a).(b)(ab), (a).(b).(a).(b) and  (ab).(ab) 
 
Let S and C be subsets of ∑*.  
if S=C*, then every string in S can be expressed as the 
concatenation of elements of in C and we say that C is a 
code. 
A code C is uniquely decipherable if every string in S can 
be uniquely expressed as the concatenation of elements of 
C. 
Is  C ={a,b,c,de} uniquely decipherable? 
same for C= {ba, ab,c}, C = {a, ab, bc, c} 
 
Let ∑ be an alphabet. A code C subset of ∑* is called a 
prefix code if for all words u, v, in C, if u=vw for w in ∑*, 
then u=v or u=ε. 
This means that one word in a code cannot be the 
beginning of another word in the same code. 
 
 
Equivalence with finite automata: 
 
Regular expressions and finite automata are equivalent in 
their descriptive power. That is any regular expression can 
be converted into a finite automaton that recognizes the 
language and vice versa. 
 
Theorem: 



A language is regular if and only if some regular 
expression describes it. 
 
Lemma: 
If a language is described by a regular expression, then it 
is regular. 
Proof: 
We consider the six cases in the formal definition of 
regular expressions and build an nfa that accepts them 
based on the rules below: 
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If a language is regular, then it is described by a regular 
expression 
 
Algorithm for converting a DFA into an equivalent regular 
expression:  
 
1) Add two states to the DFA: a start state called s and an 
accept state called a. This defines a new automaton called G 
CONVERT (G): 
Let k be the number of states of G 
If k=2, then G must consist of a start state, an accept state 
and a single arrow connecting them and labeled with a 
regular expression R. Return R. 
If k >2, we select any state qrip∈ Q different from s and a 
and let G’= (Q’, ∑, δ’,s, a), where: Q’= Q-{qrip} 
and for any  qi ∈ Q’-{a} and any qj ∈ Q’-{s} let: 
 δ’(qi, qj) = (R1)(R2)*(R3)∪ R4 for  
R1= δ(qi, qrip), R2= δ( qrip, qrip), R3= δ( qrip, qj) and 
R4= δ(qi, qj) 
 
Compute CONVERT(G’) and return this value 
 
Simplification Rules: 
Let r be the transition symbol from qi to qj, the following 
simplification rules apply: 
1. r + ∅= r 
2. r. ∅= ∅ 
3.  ∅*= ε 


