
Variables and Quantifiers 
  

  

Prepositional functions: 

The logic we have been using so far is very limited and cannot 
describe most of the statements in mathematics and computer 
science.  

For example the statement:  

       p: n is an odd integer is neither true nor false,  because it 
depends on the value of n, so it is not a proposition. 

If a statement truth value depends on the value of something, 
usually a name, in the statement, then there is a need to 
express that statement in terms of a variable. 

  

Definition: 

Let P(x) be a statement involving the variable x and let D be a 
set. We call P a propositional function (with respect to D) if for 
each x in D, P(x) is a proposition. 

We call D the domain of discourse or domain of P. 

  

Let P(n) be the statement : 

       n is an odd integer 

       and let D be the set of positive integers.  

Then P is a propositional function with the domain D, since for 
each n in D, P(n)  is true or false but not both. 

For example: 

 if n = 1, we obtain the proposition:  

              1 is an odd integer (True). 

  

If n= 2, we obtain the proposition 

2 is an odd integer (False) 

  

A propositional function is true or false of an individual.  
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For example: 

p(x): x is in Texas, D= set of cities and towns in the US. 

p(x) is true of Houston; it is not true of Atlanta. 

  

  

  

  

  

  

  
 

p(n): n2 + 2n is an odd integer, (D= set of positive integers) 

  

For each positive integer value of n, we obtain a proposition. 

For example for : 

n=1, p(1) = 2 and p(1) is true 

n=2, p(2) =8  and p(2) is false. 

…. 

Propositional functions are used to classify things (is it true of them or 
not) 

1.   What in particular is it true or false of? 

2.   How many things is it true or false of? 

  

  

  

  

  

  

Quantifiers and how many: 

A quantifier is an answer to a “how many” question: so is the 
proposition true for some, for all, no one, a few, not everyone etc.. 

For all, some, no one, not everyone are called quantifiers. 

  

For example: 

  

Which of the following quantified sentences correspond to the 

                                                                
Atlanta 

Houston 
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sentence: John is sleeping through the class. 

1.   Someone is sleeping through the class 

2.   Everyone is sleeping through the class 

3.   No one is sleeping through the class 

4.   Not everyone is sleeping through the class 

  

The answer is 1, that means that the proposition is true for some 
people, (at least one) 

These quantifiers have symbolical representations (to learn) 

  

Also, most of the statements in mathematics and computer science 
use terms such as  “for every” , “for some”, etc… 

  

For example : 

For every triangle T, the sum of the angles of T is equal to 180° 

  

  

Definition: 

Let P be a propositional function with domain of discourse D, 
the statement: 

              for every x, P(x) 

is said to be a universally quantified statement. 

  

  

  

This statement may be written: 

∀ x, p(x) 

The symbol ∀ is called a universal quantifier. 

∀ means for all 

  

Truth-value of a for all statement: 

The statement: ∀ x, p(x) is true if p(x) is true for every x in D. 

  

The statement ∀ x, p(x) is false if p(x) is false for at least one 
x in D. 
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For example: 

∀ x, p(x): For all x,  x has four limbs.  

 D= set of mammals 

  

For every animal x in the set of mammals, p(x) is true. 

To prove this, we need to show that it is true for every x in the 
set D. 

  

∀ x, p(x): For all x,  x has four limbs. (True for all x in D) 

  

  

D1= set of vertebrates. 

  

For every animal x in the set of vertebrates, p(x) is false, 
because fish is a vertebrate that does not have any limbs. 

  

∀ x, p(x)=  x2 + 2x is an odd integer 

D= set of positive integers 

is false because for  x=2, p(2) =8, 8 is an even number so p(x) is false. 

  

  

Existential  Quantifier: 

The statement: 

 For some x, p(x) is said to be an existentially quantified 
statement.  

  

The symbol ∃ means for some, or there exists, thus the 
statement: 

for some x, p(x) may be written: ∃x, p(x) 

  

The symbol ∃ is called existential quantifier. 
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Truth Value for a for some statement: 

  

The statement  

 ∃x, p(x) is true  if p(x) is true for at least one x in D 

  

The statement  

 ∃x, p(x) is false if  p(x) is false for every x in D. 

  

For example: 

1.  ∃ x, p(x): for some x,  x has four limbs. 

D=  set  of  all vertebrates 

Let x = cat, p(cat): cat has four limbs. 

p(cat) is true, so the proposition 

∃ x, p(x): for some x,  x has four limbs is true. 

  

2.  ∃ x, p(x): for some x,  x has four limbs. 

D= set of worms 

∃ x, p(x): for some x,  x has four limbs is false 

To prove this, we have to prove that  for every element x in the 
set D, p(x) is false. 

  

Proving universally quantified statements: 

Proving that a universally quantified statement is true means 
proving that it is true for every x in the domain of discourse. 

  

For every real number x, x2 ≥ 0 is true is a universally 
quantified statement. 

The domain of discourse ℜ is the set of real numbers. 

  

Proof: 

We’ll consider the  two cases of value of x: 

  

1.  Let x be a positive real number 
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x2  = x . x, the product of two positive numbers is a positive 
number. 

We have proven that for x > 0 x2 is positive. 

  

  

2.  Let x be a negative real number 

x can be re-written as (-1) |x| where |x| is the absolute value of 
x 

x2  = (-1) . |x| .(-1) |x|= (-1)(-1)|x||x|= 1|x|2>0 

  

We have proven that for x <0 x2 is positive. 

  

The propositional function p(x) > 0 for every real number x is 
then true. 

  

Prove that  

∀ real number x, if x >1, then x+1 >1 

  

We must verify that this true for every real number x that is 
greater than 1. 

  

Let x be a real number such that x >1.  

  

It is true that for every real number:  

 If x >1, then  by adding 1 to both sides of the inequality, we 
obtain: 

 x+1 > 1+1. For this, we obtain that:  

  x+1 > 2 , since 2 >1, we can conclude that: x+1 > 1 

  

  

 So if x >1, then x+1 > 1 is true  

  

Proving that a universally quantified statement is false means 
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proving that there exist an element x for which the statement is 
false. 

  

Prove that: 

  

For every real number x, x2  -1>0 is false. 

∀ real number x,  x2 -1 >0  is false 

  

To prove that a universally quantified statement is false in a 
domain of real numbers, we have to find at least one x for 
which the statement is false. 

  

For x=1, we replace x by its value (1) and we obtain: 

 (1)2 - 1 = 1 -1 = 0,  

  

0 is not greater than 0, so the statement  

 ∀  x real , x2  -1 >0  is false  

  

Proving existentially quantified statements: 

  

To prove that an existentially quantified statement is true, we 
have to find one element x for which the statement is true. 

For example: 

For some positive integer n, if n is prime, then n+1, n+2, n+3, 
n+4 are not prime. 

Symbolically we can write this as: 

∃ n integer , if n is prime that n+1, n+2, n+3, n+3 not prime. 

  

  

Let’s find an integer for which this is true: 

  

n= 23 is a prime number, n+1 =24, n+2= 25, n+3 +26 and n+4 
= 27 are not prime numbers. 
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We have proven that  

∃ n integer, if n is prime that n+1, n+2, n+3, n+3 not prime. 

  

To prove that an existentially quantified statement is false in D, 
we have to prove that it is false for every x in D. 

Let’s prove that: 

For some real number x,  is false.

 

  

We must show that  is false for every real number x.

 

  

 is false precisely when is true.

 

  

Thus, we must show that  is true for every real 
number x. 

  

Let x be a real number whatsoever, x2 is a positive number, so:
0 x2 , we add 1 on both sides of the inequality to obtain: 

1  x2 +1 

If we divide both sides of the inequality by x2 +1, the direction 
of the inequality does not change since x2 +1 is a positive 
number, we obtain: 

 

Therefore the statement 

1
1

1
2 >
+x

1
1

1
2 >
+x

1
1

1
2 >
+x

1
1

1
2 ≤
+x

1
1

1
2 ≤
+x

≤

≤

1
1

1
2 ≤
+x
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 is true for every real number x.
  

Thus, its negation:  is false for every real number x.

 

  

If the proposition is false for every real number, then it is also 
false for some real numbers. 

  

  

Generalized De Morgan Law for Logic (to learn): 

  

If P is a propositional function, each pair of proposition in (a) 
and (b)  have the same truth value 

(a) ¬ (∀ x, p(x)) ⇔ ∃ x, ¬ p(x) 

  

(b) ¬ (∃ x,  p(x)) ⇔ ∀ x, ¬ p(x) 

  

  

  

  

  

Proof:  

Suppose that : 

¬(∀ x, p(x)) is true. Then the proposition ∀ x, p(x) is false.  

By definition, the proposition (∀ x, p(x)) is false when p(x) is 
false for at least one x in the domain of discourse.  

So there exist one x for which p(x) is false. 

But if p(x) is false for at least one x in the domain of discourse, 
the ¬p(x) is true for at least one x in the domain of discourse. 

Again by definition, when ¬ p(x) is true for at least one x in the 

1
1

1
2 ≤
+x

1
1

1
2 >
+x
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domain of discourse, the proposition 

∃ x, ¬ p(x) is true 

  

Thus if the proposition : 

∀ x, ¬ p(x)) is true, the proposition ∃ x, ¬ p(x) is also true. 

Similarly 

 if ¬(∀ x, p(x)) is false, the proposition ∃ x, ¬ p(x) is also false, 
so the pair of propositions in (a) always has the same truth-
value. 

  

Let’s consider the compound proposition: 

 P1∧ P2∧ P3∧…..∧ Pn
 

The proposition P1∧ P2∧ P3∧…..∧ Pn is true if an only if Pi is 
true for every i= 1, 2,…n.  

  

It is false if there is one Pi for which Pi is false. 

  

A universally quantified proposition generalizes the compound 
proposition: 

       P1∧ P2∧ P3∧…..∧ Pn
 

in the sense that the individual propositions P1, P2, P3,….., Pn 
are replaced by an family P(x), where x is a member of the 
domain of discourse and is written as for every x, P(x) 

  

The truth value of the proposition for every x,P(x) is defined 
similarly, that is P(x) is true if and only if P(x) is true for every x 
in the domain of discourse. 

  

Similarly, and existentially quantified proposition  

P1∨ P2∨ P3∨…… ∨ Pn  
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Is true if only one Pi is true and is false if all Pi are false for i=1,
…,n. 

  

An existentially quantified proposition ∃ x, P(x)  generalizes the 
compound proposition: 

 P1∨ P2∨ P3∨…… ∨ Pn
 

  

in the sense that the individual propositions P1, P2, P3,….., Pn 
are replaced by an family P(x), where x is a member of the 
domain of discourse and is written as for some x, P(x) 

The truth value of the proposition for some x,P(x) is defined 
similarly, that is P(x) is true if there is one x  such that P(x) is 
true and is false if and only if P(x) is false for every x in the 
domain of discourse. 

  

The preceding observations on the first DeMorgan Laws of 
Logic that the propositions: 

  

1. ¬(p1 ∨ p2∨….∨ pn)  ≡ ¬ p1 ∧ ¬ p2 ∧ ….∧¬ pn
 

  

We replace each side of the equivalence by its 
counterpart and we get: 

¬(∃ x, P(x)) ≡ ∀ x ¬P(x) 

  

  

Translating from English into Logical Expressions 

  

Translating sentences in Natural Language (as English) into 
logical expressions is an essential part of specifying both 
hardware and software systems.  
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System and software engineers take requirements in natural 
language and produce precise, unambiguous specifications 
that can be used as the basis for system development.  

Express the statement: 

“The automated reply cannot be sent when the file system is 
full” 

  

 One way to represent this is to define  a single  proposition S: 
“The automated reply cannot be sent when the file system is 
full” 

This is the simplest and least useful way to represent since we 
cannot analyze the sentence or reason about it. 

A better way to translate this is to let p denote” The automated 
reply can be sent” and q denote: “ the file system is full”. Then 
¬ p represents: “It is not the case that the automated reply can 
be sent”, which also means “The automated reply cannot be 
sent”. Consequently, our specification can be expressed as: 

q → ¬p 

  

  

Every student is this class has studied calculus 

  

Using variables and quantifiers: 

  

1.  Rewrite the statement so that we can identify the 
appropriate quantifier to use: 

  

For every student in this class, that student has studied 
calculus 

  

2.  Introduce a variable x, so that our statement becomes: 

For every student x in this class, x has studied calculus. 
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3.  Introduce a preposition C(x), which is the statement: “x 
has studied calculus”. 

  

4.  Choose the universe of discourse: 

If the universe of discourse consists of the student in the 
class, the statement is expressed as: 

∀ x, C(x). 

If  we change the domain of discourse to consist of all 
people, we need to express our statement as: 

  

“For every person x, if person x is a student in this class then 
x has studied calculus” 

  

if S(x) represents the statement: 

 “x is a student in this class”,  

our statement can be expressed as: 

∀ x (S(x)  C(x)) 

  

Caution: we cannot express our statement as: 

  

∀ x (S(x) ∧ C(x)), since this statement says that all people 
are students in this class and have studied calculus. 

  

•       All students are happy: 

S(x) : x is a student 

H(x): x is happy 

  

       ∀x, S(x)  H(x)           

  

       Some students are majoring in CS 

If we let the proposition P(x) :”x is student”, and Q(x) be “x is 
majoring in CS” 

This can be re-written as: 
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∃ x P(x) ∧ Q(x) 

  

  

       Some apples are red 

If we let the proposition P(x) :”x is an apple”, and Q(x) be “x is 
red” 

This can be re-written as: 

∃ x (P(x) ∧ Q(x)) 

  

       All humans are mortal: 

If we let P(x) be the proposition “x is human”, and Q(x) the 
proposition “x is mortal” 

This can be re-written as: 

∀ x , P(x)  Q(x) 

  

All senior citizens and students get a discount: 

P(X): x is a senior citizen 

Q(x) : x is a student 

S(x): x gets a discount. 

 ∀x, P(x) ∨ Q(x)  S(x) 
  

  

All students like Logic 
S(x): x is a student 

L(x): x likes logic 

∀x, S(x)  L(x)            

  

If a person is female and is a parent, then this person is 
someone’s mother: 

  

For every person x, if person x is female and person x is a 
parent, then there exists a person y such that x is the mother 
of y. 
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We introduce: 

F(x): x is female 

P(x): x is parent 

  

M(x, y): x is mother of y 

  

The original statement is represented as: 

∀x((F(x) ∧ P(x))  ∃y M(x, y) 

  

we can move ∃y to the left of the condition because y does 
not appear in F(x) ∧ P(x), and we obtain an equivalent 
expression: 

            ∀x ∃y ((F(x) ∧ P(x))  M(x, y) 

  

  

All mothers are female 

F(x) : x is female 

M(x,y) : x is mother of y 

  

∀y ∃x (M(x, y)  F(x)) 

  

  

if x and y are siblings, x is either the brother of y or x is the 
sister of y. 

S(x, y) : x is sibling of y 

B(x, y): x is  brother of y 

C(x,y) : x is sister of y 

∀ x,∀ y,S(x, y)  B(x, y) ∨ C(x,y). 

  

Every dog has a tail. 

D(x): x is a dog 

H(x,y): x has a tail y 

∀x ∃ y(D(x)  H(x,y)) 
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Nested Quantifiers: 

  

Nested quantifiers are  quantifiers that occur in the scope of 
other quantifiers, such as the statement: 

  

  

∀x ∃y (x+y =0) 

  

Assume that the universe of discourse for the variables x and 
y consists of all real numbers. 

The statement: 

 ∀x ∀y (x+y =y+x)  

  

says that 

  x+y = y+x for all real numbers x and y . 

The statement  

∀x  ∃y (x+y =0) says that: 

For every real number x there is a real number y such that 
x+y =0. 

  

Translate into English: 

∀x  ∀y( (x > 0) ∧ (y < 0) → (x.y < 0)) 
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