
Pushdown Automata 

 

Pushdown automata are like non-deterministic finite automata, but have 

an extra component called a stack.  

 

A stack provides additional memory beyond the finite amount 

available. The stack allows pushdown automata to recognize some 

nonregular languages. 

 
 

A pushdown automaton (PDA) can write symbol on the stack and read 

them back later.  

-Writing a symbol “pushes down” all the other symbols on the stack. At 

any time, the symbol on the top can be read and removed. The 

remaining symbols then move back up. 

-Writing a symbol on the stack is referred to as pushing the symbol,  

-Removing the symbol is referred to as popping it. 

 

A stack is a “last in, first out” storage device and read/write access can 

only be done at the top. 

 

Formal definition of a pushdown automaton: 

 

The formal definition of a pushdown automaton is similar to that of a 

finite automaton, except for the stack. The stack is a device containing 

symbols drawn from some alphabet. The machine may use different 

alphabets for its input and its stack. So we specify both an input 

alphabet  and a stack alphabet . 

The transition function  which describes the automaton behavior is 

defined as   Q x  x   P( Q x ) 

State 

Control 

a      a       b       b 

x 

 

y 

 

z 



 

A pushdown automaton is a 6-tuple  P(Q, , , , q0, F), where Q, , , ,  

F are all finite sets: 

1. Q is the set of states. 

2.  is the set of  input symbols 

3.  is the stack alphabet 

4. : Q x  x   P( Q x ) is the transition function 

5. q0 Q is the start state and 

6. F  Q is the set of accept states. 

 

Computation: 

A pushdown automaton M =(Q, , , , q0, F) computes as follows: 

It accepts input w if w can be written as w= w1w2…wm, where each wi 

  and sequences of states  r0, r1, …rm  Q and  

strings s0, s1, …, sm  
*
 exist that satisfy the following 3 conditions. 

The strings si represent the sequence of stack contents that M has on the 

accepting branch of the computation: 

1. r0=q0 and s0= . This condition signifies that M starts on the start state 

and that the stack is empty. 

2. for i=0,…., m-1, we have (ri+1,b)  (ri, wi+1,a), where si=at and si+1 = bt 

for some a, b   and t  
*
.  This condition states that M moves 

properly according to the state stack, and next input symbol. 

3. rm F. This condition states that an accept state occurs at the input end. 

 

The following is the formal description of the PDA that recognizes the 

language {0
n
1

n
 | n  0}. 

Let M1= (Q, , , , q1, F) where 

Q={q1, q2, q3, q4}, 

 = {0, 1}, 

 = {0, $}, 

F= {q1, q4}, and 

 is given by the following table, wherein blank entries signify  

 can also be defined as such: 

 

((q1, 0, ), (q2, 0$)) 

((q2, 0, 0$), (q2, 0)) 

((q2, 0, 0), (q2, 0)) 

((q2, 1, 0), (q3, )) 



((q3, 1, 0), (q3, )) 

((q3, , $), (q4, )) 

 

 

 

 

 

 

 

 

 

 

 

Consider the following language defined by the expression:   

{a
n
b

n
c

2n
| n ≥ 1}  

(Assignment: Using Jflap design the corresponding push down 

automaton) 

 

 

Theorem: 

 

A language is context free if and only if some pushdown automaton 

recognizes it. 

 

Lemma: 

If a language is context free, then some pushdown automaton 

recognizes it. 

 

 

Let A be a Context free language; then there is a CFG  G that generates 

it.  

 

PDA as a program: 

We draw the program of a PDA as a flowchart. There are 5 components 

to this: 

 A single start state 

 A single halt-and-accept state 

 A reader box: this reads one symbol from the input and, 

depending on the symbol read, goes to a new state 

Input 0 1  

Stack 0 $  0 $  0 $  

q1   (q2,0$)       

q2 (q2,0)   (q3,)      

q3    (q3,)    (q4,)  

q4          



 a pop box: this pops one symbol from the stack and, depending 

on the symbol , goes to a new state. 

 A push box: this adds a specific symbol to the stack. 

The flowchart has no reject state, if the machine gets to a state and 

there are no legal continuation, then we assume that the machine 

halts and rejects the input. 

We also need a special symbol, we will use   to indicate the end of 

the input string. We will also use  to indicate the result of popping 

when the stack is empty- we can think of this as the stack starting 

with the special symbol  on it. 

 

The language {0
n
1

n
: n  > 0} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Balanced brackets: 

We consider strings consisting entirely of left and right brackets. Such 

strings are called balanced if (a) reading from left to right, the number 

of left brackets is always at least the number of right brackets; and (b) 

the total number of left brackets equals the total number of right 

brackets.  

A grammar for  such strings is: 

S (S)| SS| 

Draw the flowchart for this grammar. 

 

 

 

START 

READ PUSH x 
0 
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x 
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Nondeterministic Push down automaton: 

 

Find a pushdown automaton that recognizes the language  

{ a
i
b

j
c

k
| and i=j or i=k} 

informally the PDA for this language works by first reading and 

pushing the a’s. When the a’s are done, the machine has all of them in 

the stack so it can match them with either the b’s or the c’s. This is 

somewhat tricky because the machine does not know in advance 

whether it should match the a’s with the b’s or with the c’s. 

 

 

 

 

q5 

  

 

 

 

 

 

 

 

 

Informally, this PDA works by reading an a and pushing it  or  reading 

a b and pushing it.  

 

Given that an NPDA is in state p, with symbol A on top of the stack and 

the input is symbol a, it may do one of the following: 

 if (p, a,A) then it : 

o “pops” A from the stack 

Input a b c  

Stack a $  a    $  a $  $ 

q0   ((q1,a$)        

q1 (q1,aa)   (((q2,)       

q2    ((q2,)   (q3,)    

q3      ((q4,) (q3,)   (q3,) 

q4      (q4,) (q5, )    

q5       (q5,)   (q6,) 

q0 

q1 
q2 

q4 

a,a$ 

a,aaa 

b,a 

b,a  

b,a c,a 

b,a 

c,$ 

q3 

c,a 

,$ 



o “pushes” word A1A2…An onto the stack by starting with 

symbol An, and ending with symbol A1, 

o “consumes” a by moving to the next symbol to the right of 

a 

o enters state q 

if  (p, ,A)=  then M does nothing. 

 if  (p, ,  A) ≠  , then, without reading a , it  

1. ``pops'' A off the stack,  

2. ``pushes'' word A1 An onto the stack, and  

3. enters state q,  

as long as (q A1 An)   (p , A) ; 

 if  (p , A)=  , then M does nothing.  

If (q )   (p a A) , then A gets popped off, and nothing gets pushed 

onto the stack.  

 

 

Modes of Acceptance 

A PDA is a language acceptor. We describe how words are 

accepted by a PDA M . First, we start with configurations. 

A configuration of M is an element of Q  . For any word u , 

the configuration (q0 u $) is called the start configuration of u . 

 A binary relation on the set of configurations is defined as follows: 

if (p u ) and (q v ) are configurations of M , then (p u ) (q v

) provided that =A  and =B1 Bn  , for some A B1 Bn  , 

and 

 either u=av , and (q B1 Bn)   (p a A) ,  

 or u=v , and (q B1 Bn)    (p , A) .  

Now, take the reflexive transitive closure of . When (p u ) (q v

) , we say that v is derivable from u . A word u  is said to be  



 accepted on final state by M if (q0 u $) (q  ) for some final 

state q F ,  

 accepted on empty stack by M if (q0 u $) (q  ) ,  

 accepted on final state and empty stack by M if (q0 u $) (q 

) for some q F .  

 

 

 

Procedure on how to convert G into an equivalent PDA, called P: 

1. Place the  marker symbol $ and the start variable on the stack 

2. Repeat the following steps forever: 

a. if the top of stack is a variable (non-terminal) symbol A, non 

deterministically select one of the rules for A and substitute A by the 

string on the right-hand side of the rule. 

b. If the top of stack is a terminal  symbol a, read the next symbol from 

the input and compare it to a. If they match, pop a and repeat step 2. If 

they do not match, reject on this branch of the non-determinism. 

 

c. if the top of stack is the symbol $, enter the accept state. Doing so 

accepts the input if it has all been read. 



 

 

Non-Context Free languages: 

 

The pumping lemma for context free languages states that every context 

free language has a special value called the pumping length such that all 

longer strings in the language can be “pumped”. This means that the 

string can be divided into five parts so that the second and the fourth 

parts may be repeated together. 

 

Theorem: 

Pumping lemma for context-free languages: If A is a context free 

language, then there is a number p( the pumping length) where, if s is 

any string in A of length at least p, then s may be divided into five 

pieces s= uvxyz satisfying the conditions: 

1. for each i  0, uv
i
xy

i
z  A 

2. |vy| > 0 and 

3. |vxy|  p 

 

When s is being divided into uvxyz, condition 2 says that either v or y 

is not the empty string. 


