
 
Proofs 

 
A mathematical system consists of axioms, definitions 
and undefined terms. 
An axiom is assumed true.  
Definitions are used to create new concepts in terms 
of existing ones. 
Undefined terms are only defined implicitly defined by 
the axioms. 
Within a mathematical system, we can derive 
theorems. 
A theorem is a proposition that has been proved true. 
A lemma is a special kind of theorem that is not 
usually interesting. 
A corollary is a theorem that follows quickly from 
another theorem. 
Euclidian geometry is an example of mathematical 
system. 
 
Example of an axiom in this system:  
Given two distinct points, there is exactly one line that 
contains them. 
 
The terms points and line are undefined terms that 
are implicitly defined by the axiom. 
 
Example of a definition: 
 
Two angles are supplementary if the sum of their 
measure is 180°. 



If two sides of a triangle are equal, then the angles 
opposite them are equal. 
 
A corollary is: 
“If a triangle is equilateral, then it is equiangular.” 
 
 
Theorems are often of the form: 
 
 Theorem 1: 
for all x1, x2,…, xn, if p(x1, x2,…, xn) then q(x1, x2,…, xn) 
 
This universally quantified statement is true provided 
that the conditional statement: 
if p(x1, x2,…, xn) then q(x1, x2,…, xn) 
is true for all x1, x2,…, xn. 

 
 
Direct proof: 
 
To prove that Theorem 1 is true, we assume that: 

1. x1, x2,…, xn are arbitrary  members of the domain 
of discourse.   

2. We also assume that  p(x1, x2,…, xn) is true 
3.  then , using p(x1, x2,…, xn) as well as other 

axioms, definitions and previously derived 
theorems, we show directly that q(x1, x2,…, xn) is 
true 

 
 
 



 
We will give a direct proof for the following statement: 
 
For all real numbers d, d1, d2, and x 
   If d = min {d1, d2 } and x ≤ d then x ≤ d1and x ≤  d2 
 
Proof: 
 
We will assume that d, d1, d2 and x  are arbitrary real 
numbers. 
We will assume that 
{d = min {d1, d2 } and x ≤ d }is true and then prove that 
: x ≤ d1   and x ≤  d2 
 
From the definition of a minimum, it follows that : 
d ≤  d1   

 and  
d ≤ d2 
 
From x ≤ d and d ≤ d1, we derive that x ≤ d1    
 
From x ≤ d and d ≤ d2, we  derive that x ≤ d2, 

Therefore,    x ≤ d1   and x ≤  d2 
 
 
 
 
 
 
 



Indirect Proof: 
 
Since the implication p  q is equivalent to its 
contrapositive  ¬q ¬p , the implication p  q can be 
shown by proving its contrapositive ¬q ¬p is true.  

 
 
Prove that  
For all real number x and y, if x+y ≥ 2, then either x≥ 1 
or y ≥ 1. 
 
Proof: 
Suppose that: 
We assume the conclusion is false:  

either x≥ 1 or y ≥ 1 is false 
 
  So, its negation : ¬ (either x≥ 1 or y ≥ 1) is True,  

 
 And should conclude that  the hypothesis is false 
:  x+y ≥ 2  is false 

 
¬ (either x≥ 1 or y ≥ 1) is True  ⇔ x <1 and y< 1.  
Note that negating or results in and. 

x <1 and y<1 
We add each corresponding member of the inequality 
and we get: 

x+y < 1+1 =2 ⇔ x + y < 2 
At this point, we have derived  ¬p 
where p : x+y ≥ 2. 
Thus we conclude that the statement: 



For all real number x and y, if x+y ≥ 2, 
 then either x≥ 1 or y ≥ 1 is true. 

 
 
This special case of proof is called a proof by 
contrapositive. 
 
Deductive reasoning: 
 
The process of drawing a conclusion from a sequence 
of propositions is called deductive reasoning. 
For example: 

1. The bug is either in module 17 or in module 81. 
2. The bug is a numerical error 
3. Module 81 has no numerical error. 

 
If these statements are true, it is reasonable to 
conclude that  

The bug is in module 17. 
 
The given propositions are called hypotheses, and the 
proposition that follows from the hypotheses is called 
conclusion 
 
Valid argument: 
Any argument of the form  
If p1 and p2 and …pn then q can be written as a 
sequence of propositions: 

 
 
 



p1 
p2 

. 

. 
pn 

 

∴ q 
The propositions p1 p2  …pn  are called the premises 
or the hypotheses and q is called the conclusion. 
The argument is valid provided that: 
if  p1 and p2 … and pn  are all true, then q must also be 
true .Otherwise, the argument is invalid or a fallacy. 
 
Determine whether  
  p  q 
  p 
    
  ∴q 
is valid 
 
 
Proof :  
Suppose that p  q  and p is true. Then q must be 
true, otherwise p q would be false. 
Therefore, the argument is valid. 
 
Rules of inference for propositions: 
 
For a proof as a whole to be valid, each step of the 
proof has to draw intermediary conclusions that are 
valid. 



To make sure that the intermediary conclusions are 
valid, each conclusion has to be deduced using some 
of the rules of inference listed below: 
 
 
 
 
 
 
Rule of inference  Name 
p  q 
p 
∴ q 

Modus Ponens 

p  q 
¬q 
∴ ¬p 

Modus Tollens 

 
p 
∴ p ∨ q 

 
Addition 

p ∧ q 
∴ p 

Simplification 

p  
q 
∴ p ∧ q 
 

Conjunction 

p  q 
q r 
_________ 
∴ p  r 

Hypothetical syllogism 

  



p ∨ q  
¬p 
∴ q 

Disjunctive syllogism 

 
 
 
 
 
Which rule of inference is used in the following 
argument: 
 
If the computer has 32 Meg of RAM, then it can run 
“SoundBlaster”, if it can run “SoundBlaster” then the 
sonics will be impressive.  
Therefore, if the computer has 32 Meg then the 
sonics will be impressive. 
P : “The computer has 32 meg of RAM” 
Q : “The computer  can run “SoundBlaster”” 
R :  “The sonics will be impressive” 
 
The arguments can be represented as: 
 P  Q 
 Q  R 
     

 ∴P  R  
This argument uses the hypothetical syllogism rule, 
so it is true. 
 
Let’s have the following argument:  
 



if I study hard, then I get A’s 
I study hard. 
Let p: “I study hard”, q: I get A’s 
 If I study hard then I get A’s 
 I study hard 
_______________________________ 

 
∴ I get A’s 
 
p     q 
p 
_________ 
∴ q 
  
This argument uses the modus ponens, therefore it is 
valid. 
 
Let’s have the argument:  
 
If I study hard, then I get A’s,  
 I do not get A’s, therefore I do not study hard. 

 
 p     q 
 ¬q 
_________ 
∴ ¬p 
  
This argument uses the modus tollens, therefore it is 
valid. 
 
Let’s have the argument:  



  
I study hard, therefore I study hard or I will get rich  
      

p 
_________ 
∴p ∨ q 
 
This argument uses the addition rule of inference, 
therefore it is valid. 
 
  
Let’s have the argument: 
 
I study hard and I get A’s, therefore I study hard 
 
p∧q 
________ 
∴p 
 
This argument uses the simplification rule of 
inference, therefore it is valid 
 
Let’s have the argument: 
I study hard, I have A’s, therefore I study hard and I 
have A’s 
   
 p 
 q 
______ 
∴ p ∧ q 



This argument uses the conjunction rule of inference 
therefore it is valid 
 
Let’s have the argument: 
 
I study hard or I get A’s, I do not get A’s, therefore I 
study hard 

 
p ∨ q 
¬ q 
---------- 
∴ p 
 
This argument uses the disjunctive syllogism rule of 
inference therefore it is valid 
  
 
Rules of Inference for Quantified Statements: 
 
There are 4 rules of inference for quantified 
statements: 
Let x be a universally quantified variable in the 
domain of discourse D, such that p(x) is true,  

∀ x∈ D, p(x)  is true 
 
 
 
 
 
 
 



Rule of Inference Name 
∀ x∈ D P(x) 
------------------- 
∴ P(d) if d ∈ D 

Universal instantiation 

P(d) for any d ∈ D 
-------------------------- 
∀ x∈ D P(x) 

Universal generalization 

 
∃ x∈ D P(x) 
------------------- 
∴ P(d) for some  d ∈ D 

Existential instantiation 

P(d) for some d ∈ D 
-------------------------- 
∃ x∈ D P(x) 

Existential generalization 

 
 
Everyone who is taking CS124 wants an A. 
 
Let’s D be the domain of all students taking CS124 
 P(x) : x wants an A 
 ∀ x∈ D P(x) 
 John ∈ D, therefore, P(john) is true. (universal 
instantiation) 
 
P(d) for any d in D , for any student d in CS124,  
P(d)= “d wants an A” is true, 
------------------------------------------------------------------------ 
∀ x∈ D P(x) 
  
Some students taking CS124 love proofs 
 
Let’s D be the domain of all students taking CS124 



Let Q denote the proposition: x loves proofs 
 We can re-write this as : 
∃ x∈ D Q(x) 
-------------------- 
This means that we can find at least one student d  in 
CS124 for which  Q(d) is true. 

 
Conversely, if we can find at least one student d in 
CS124 for which Q(d) is true, then ∃ x∈ D Q(x) is true. 

 
 
 
Combining propositional and quantified statement 
inferences: 

 
Let’s have: 
1-  everyone loves either MS-DOS or UNIX. 
 2-   Lynn does not love MS-DOS.  

Show that the conclusion “Lynn loves UNIX”  follows 
from the hypotheses 

 
Let p(x) denote the propositional function: “x loves 
MS-DOS” 
Let q(x) denote the propositional function: “x loves 
UNIX” 

 
The first hypothesis can be re-written as: 
∀ x p(x) ∨ q(x) 
By universal instantiation, we have: 
p(Lynn) ∨ q(Lynn) 



The second hypothesis is  ¬ p(Lynn) 
p(Lynn) ∨ q(Lynn) 
¬ p(Lynn) 
----------------------------- 
q (Lynn) by disjunctive syllogism. 

Therefore, the conclusion follows from the 
hypotheses. 

 
 

 
 
 
Quantifiers and Logical Operators  

 
1. ∀ x [p(x) ∧ q(x) ] ⇔ [∀ x p(x) ∧  ∀ x  q(x) ] 
2. ∀ x [p(x) ∨  q(x) ] ⇔ [∀ x p(x) ∨   ∀ x  q(x) ] 
3. ∃ x [p (x) ∧  q(x) ] ⇔ [∃ x p(x) ∧   ∃ x  q(x) ] 
4. ∃ x [p (x) ∨  q(x) ] ⇔ [∃ x p(x) ∨   ∃ x  q(x) ] 

 
 
 

 
 
  
 
  


