
 
Non Regular Languages 

 
Pigeonhole Principle: 
      
The Pigeonhole Principle states that if n pigeons fly into 
m pigeonholes and n > m then at least one hole must 
contain two or more pigeons. 
 

 
 

 
 

 
 

 
 
 
 
Pigeonhole Principle: 
A function from a finite set to a smaller set cannot be one-
to-one. There must be at least two elements in the domain 
that have the same image. 
 
 



Because a finite state automaton can assume only a finite 
number of states and because there are infinitely many 
input sequences, by the pigeonhole principle, there must 
be at least one state to which the automaton returns over 
and over again. This is an essential feature of the 
automaton. 
Consider a language that consists of 1 followed by an 
arbitrary number of 0 and then a 1. Example of inputs 
strings are  11,101,1001. 
Now there are infinitely many such strings and only 
finitely many states.  
Thus, by the pigeonhole principle, there must be a state sm 
and two input strings ap and aq with p≠q such that when 
either ap or aq are input to A, A goes to state sm. (the 
pigeons are the strings of a’s, the pigeonholes are the 
states and the correspondences associate each string with 
the state to which A goes when the string is input). 
 
 
Showing that a language is not regular using the 
pigeonhole principle: 
 
Example: 
L= {s  ∑* | s= anbn | n≥ 0} 
If we attempt to find a DFA that recognizes B, we 
discover that the machine needs to remember how many 
a’s have been seen so far as it reads the input. So the 
machine has to keep track of unlimited number of 
possibilities, this cannot be done with a finite number of 
states. In this case, we say that the language B is 
nonregular. 
We use the pigeonhole principle to show that B is not 
regular. We use a proof by contradiction. 
 
 



 
Suppose L is regular.  
Then some DFA M= (Q, {a,b}, δ, q0, F) exists for it.  
Now look at δ*(q0, ai) for i= 1, 2, .. Since there are an 
unlimited number of i’s, but only a finite number of states 
in M, the pigeonhole principle tells us that there must be 
some state, q, such that: 
δ*(q0, an)= q and δ*(q0, am)= q with m≠n. 
But since M accepts anbn, we must have δ*(q, bn)=qf ∈F. 
 
From this we can conclude that  
δ*(q0,ambn) = δ*(δ*(q0,am), bn) 
    =δ*(q, bn) 
    =qf 
 This contradicts the original assumption that M accepts  
ambn only if m= n and leads us to conclude that L cannot 
be regular. 
 
In order to use this type of arguments in a variety of 
situations, we usually codify it as a general theorem, 
known as the pumping lemma. 
 
The Pumping Lemma for regular languages: 
 
Let  L be  an infinite  regular language, then there some 
positive integer m, such that any w ∈L with |w| ≥ m can 
be decomposed as:  

1. w= xyz 
2. |y| > 0 
3. wi=  xyiz ∈L for all i=0, 1, 2,…  

To paraphrase this, every sufficiently long string in L can 
be broken into three parts in such a way that an arbitrary 
number of repetitions of the middle part yields another 



string in L. We say that the middle string is pumped, 
hence the term “pumping” lemma. 
 
Proof: 
If L is regular, there exists a dfa that recognizes it. Let 
such a dfa have the states labeled q0, q1, …qn. Now take a 
string w in L such that |w|≥ m= n+1.  
Consider the set of states the automaton goes through as it 
processes w, say q0, qi, qj,…qf 
Since this sequence is exactly |w| +1 entries, at least one 
state must be repeated and such a repetition must start 
before the nth move. Thus the sequence must look like: 
q0, qi, qj,…,qr,…qr,…qf 
indicating there must be substrings x, y, z of w such that  
δ*(q0,x) = qr 
δ*( qr, y)= qr 
δ*(qr,z)= qf 
with |xy| ≤ n+1=m and |y| ≥ 1.  
From this, it follows that: 
δ*(q0,xz) = qf 
δ*( q0, xy2z)= qf 
δ*(q0,xy3z)= qf 
 
The pumping lemma is used to show that certain 
languages are not regular. The demonstration is always by 
contradiction.  
 
Using the pumping lemma, we show that L = {anbn : n≥0} 
is not regular 
Assume that L is regular, so that the pumping lemma must 
hold. We do not know the value of m, but whatever it is, 
we can always choose n=m.  
Therefore, the substring y must consists entirely of a’s. 
Suppose |y|= k. Then the string obtained using i=0 is 



w0= am-kbm and is clearly not in L. This contradicts the 
pumping lemma and thereby indicates that the assumption 
that L is regular must be false. 
 
This means that after p a’s have been input, at which point 
A is in state sm, inputting q additional b’s sends A into an 
accept state, sq. 
 
In applying the pumping lemma, we must keep in mind 
what the theorem says. We are guaranteed the existance of 
an m as well as the decomposition xyz, but we do not 
know what they are. 


