Mathematical Background Material

Sets

- A set : a collection of objects represented as a unit.
- The objects of the collection are called the members or elements.
- A set is completely determined by its members
- Two sets are equal iff the two sets have the same members.
- Curly braces will be used to define sets. Thus, \{Tom, Mary, Paul\} refers to the set whose elements are Tom, Mary, and Paul, while $\{x \mid x$ is a unicorn $\}$ refers to the set of all unicorns.
- The symbols \in and \notin denote set membership and nonmembership.

Sets

- A set that does not have any elements is called the empty set and is denoted \varnothing
- Given two sets A and B, we say that A is a subset of B, written $A \subseteq B$, if every member of A is also a member of B.
- We say that A is a proper subset of B, written $A \subset B$ if A is a subset of B and not equal to B.

Sets of Numbers

- The symbol \mathbf{N} denotes the set of natural numbers, which are the "counting numbers" $0,1,2,3,4, \ldots$
- The symbol \mathbf{Z} denotes the set of integers, which are: $\{. . .,-2,-$
$1,0,1,2, \ldots\}$

Venn Diagrams

- Venn Diagrams are a type of pictures that represent sets as regions enclosed in circular lines
- The elements of the set are listed inside of the diagram

Set-building operations

Given sets A and B, one can construct new sets as follows:

- The union of A and B is the set $A \cup B$ containing all elements of A, all elements of B, and no other elements.
- The intersection of A and B is the set $A \cap B$ whose elements are the objects that are simultaneously elements of both A and B.
- Sets are said to be disjoint if their intersection is the empty set.
- The difference of A and B is the set $A-B$ whose elements are those elements of A that are not elements of B.

Set Building Operations

- The complement of A is the set A^{\prime} of all objects belonging to some predetermined universal set that depends on the context, that are not elements of A. So A ' is really just $U-A$, where U is the universal set.
- The Cartesian product of A and B is the set $A \times B$ whose elements are the pairs (a, b), where a ranges over all elements of A and b ranges over all elements of B.
- The powerset of a set A is the set of all possible subsets for A.

Set Building operations

- A partition of a set S is a collection of subsets that are disjoint from each other and whose union is S
- A bag is a collection of elements with no order, but with duplicate-valued elements. To distinguish bags from sets, we use square brackets [] around a bag's elements.

DeMorgan's laws

One has the following duality relations for the union and intersection operations:

- $(\mathrm{A} \cup \mathrm{B})^{\prime}=\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}$
- $(\mathrm{A} \cap \mathrm{B})^{\prime}=\mathrm{A}^{\prime} \mathrm{U} \mathrm{B}^{\prime}$

Sequences

- A sequence is a collection of elements with an order, and which may contain duplicate-value elements.
- We usually designate a sequence by writing the list within parentheses. For example, the sequence $7,21,57$ is written as $(7,21,57)$
- As with sets, sequences may be finite or infinite. Finite sequences often are called tuples.
- A sequence with k elements is called a k-tuple. A 2-tuple is called a pair.
- Let s be a sequence, we denote the first element of the sequence as s_{1}, the second element as s_{2}, \ldots the nth element as s_{n}. We call n the index of the sequence.

Increasing sequences:

- A sequence S is increasing or non decreasing if $S n \leq S_{n+1}$ for all n
- For example, the sequence $2,4,6, \ldots$ is increasing since:

$$
S_{n}=2 n \leq 2(n+1)=S_{n+1} \text { for all } n
$$

Decreasing sequences

- A sequence s is decreasing or nonincreasing if $S_{n} \geq S_{n+1}$ for all n
- Example: $x_{n}=(1 / 2)^{n}$
$-1 \leq n \leq 4$
- The elements of x are: $2,1,1 / 2,1 / 4,1 / 8$, 1/16
- The elements of x_{n} are decreasing since x_{n} $=(1 / 2)^{n} \quad \geq(1 / 2)^{n+1}=x_{n+1}$ for all n.

Sequence Summation

- If $\left\{a_{i}\right\}_{j=m}^{i=n}$ is a sequence, we define the subsequence sum as:
$\sum_{i=m}^{i=n} a_{i}=a_{m}+a_{m+1}+a_{m+2} \ldots+a_{n}$
- The formalism $\sum_{i=m}^{i=n} a_{i}$ is called sum or sigma notation

Sequence Product

- We also define the subsequence product of a sequence by:

$$
\prod_{i=m}^{i=n} a_{i}=a_{m} \cdot a_{m+1} \cdot a_{m+2} \ldots . a_{n}
$$

- The formalism $\prod_{\ell=n}^{l n} a_{i}$ is called the product notation.
- i is called the index, m is called the lower limit, and n is called the upper limit.
- The name of the index is irrelevant:

RELATIONS

- A relation can be thought of as a set of ordered pairs.
- We consider the first element of the ordered pair to be related to the second element of the ordered pair.
- Definition:
- A relation R from a set X to a set Y is a subset of the Cartesian Product $X x Y$,
- if $(x, y) \in R$, we write $x R y$ and say that x is related to y .
- In case $X=Y$, we call R a binary relation on X.

Domain and Range of a relation

- The set $\{x \in X \mid(x, y)$ for some $y \in Y\}$ is called the domain of R.
- The set $\{y \in Y \mid(x, y)$ for some $x \in X\}$ is called the range of R.
- If a relation is given as a table, the domain consists of the first column and the range consists of the second column.

Digraph

- An informative way to picture a relation on a set is to draw its digraph.
- To draw the digraph of a relation on a set X :
- First, draw dots or vertices to represent the elements of X.
- Next, if the ordered pair (x,y) $\in \mathrm{R}$, draw an arrow, called a directed edge from x to y.
- An element of the form (x, x) is in relation with itself and corresponds to a directed edge from x to x called a loop.

Properties of Relations

Reflexive:

- A relation R on a set X is called reflexive if $(x, x) \in R$ for every $x \in X$.
- The digraph of a reflexive relation has a loop on every vertex.

Properties of Relations

Symmetric:

- A relation R on a set X is called symmetric if :
for all $x, y \in X$, if $(x, y) \in R$ then $(y, x) \in R$.
- The digraph of a symmetric relation has the property that whenever there is a directed edge from any vertex v to a vertex w, then there is a directed edge from w to v.

Properties of Relations

Antisymmetric:

- A relation R on a set X is called antisymmetric if for all $x, y \in X$,
if $((x, y) \in R$ and $x \neq y)$ then $(y, x) \notin R$.

The digraph of an antisymmetric relation has the property that between any two vertices there is at most one directed edge.

Properties of Relations

Transitive:

- A relation R on a set X is called transitive if:
- for all $x, y, z \in X$,
if $((x, y) \in R$ and $(y, z) \in R$ then $(x, z) \in R$

The digraph of a transitive relation has the property that whenever there are directed edges from x to y and from y to z, there is also a directed edge from x to z.

Partial Orders

- A relation R on a set X is called a
partial order if R is reflexive, antisymmetric and transitive.
- For example, the relation R defined on the set of integers by: $(x, y) \in R$ if $x \leq y$ is a partial order, it orders the integers.

Inverse of a relation

- Let R be a relation from X to Y . The inverse of R, denoted R^{-1} is the relation from Y to X defined by
- $R^{-1}=\{(y, x) \mid(x, y) \in R\}$

Composition of Relations

- Let R1 be a relation from X to Y and R 2 be a relation from Y to Z.
- The composition of R1 and R2, written as R2 o $R 1$ is the relation from X to Z defined by: R2 o R1 $=\{(x, z) \mid(x, y) \in R 1$ and (y, z) $\in \mathrm{R}$ 2 for some y in Y$\}$

Equivalence Relation

- A relation that is reflexive, symmetric and transitive on a set X is called an equivalence relation on X.

Functions

- A function $\mathrm{f}: \mathrm{B}->\mathrm{A}$ from a set B to another set A is an object that sets up an inputoutput relationship.
- A function takes an input and produces an output.
- In every function, the same input always produces the same output.

Function Domain and Range

- If f is a function whose output value is b when the input value is a, we write: $f(a)=b$.
- A function is also called a mapping and if $f(a)=b$, we say that f maps a to b.
- The set of possible inputs to the function is called its domain. The outputs of a function come from a set called its range. The notation for saying that f is a function within domain D and range R is: $f: D \rightarrow R$

Recurrence Relation

- A recurrence relation defines a function by means of an expression that includes one or more (smaller) instances of itself. A classical example of recursive definition for the factorial function is:
-
- $1!=0!=1$.

Recursion and induction

- Recursion is a method of defining countable sets, relations, or functions in a step-by-step fashion.
- Induction is a method of reasoning which may be used to show that every element of an inductive set has a certain property.

Example of recursion

- Find a formula for the sum S_{n} of the first n natural numbers: $S_{n}=1+2+3+\ldots+n$.
- You try some small values of n and find: $\mathrm{S}_{0}=0, \mathrm{~S}_{1}=1, \mathrm{~S}_{2}=3, \mathrm{~S}_{3}=6, \mathrm{~S}_{4}=10$.
- Assume that $\mathrm{Sn}=\mathrm{n}(\mathrm{n}+1) / 2$

How does induction work?

- (Basis step) Check the first value of $\mathrm{n}: \mathrm{n}=0$. Yes, $\mathrm{S}_{0}=0=0(0+1) / 2$.
- Assume that the formula is correct for n
- (Induction step) Assume that you've checked all the values up to and including some n , and show that the next value, $n+1$ also checks:

$$
\begin{aligned}
S_{n+1} & =S_{n}+(n+1)=n(n+1) / 2+(n+1) \\
& =(n+1)(n / 2+1)=(n+1)(n+2) / 2
\end{aligned}
$$

Inductive Set

- A set A constructed by recursion according to the above procedure is called an inductive set

Recursive function

- Using recursion, one proceeds as follows:
- Define the "first value" $f(0)$ of the function.
- Assuming that the values $f(0)$... $f(n)$ have been defined for some value of n, define the "next value" $f(n+1)$, possibly in terms of one or more of the "previous values" $f(0) \ldots f(n)$.
- More generally, a definition by recursion constructs a set A in three steps:
- Basis step: Define a starting set A0.
- Recursion step: Assume that sets A0, ... An have been defined. Then define the "next" set An+1 in terms of A0, ... An.

Summations and Recurrences

$$
\begin{align*}
& \sum_{i=1}^{n} i=\frac{n(n+1)}{2} \tag{1}\\
& \sum_{i=1}^{n} i^{2}=\frac{2 n^{3}+3 n^{2}+n}{6} \tag{2}\\
& \sum_{i=1}^{\log n} i=n \log n \tag{3}\\
& \sum_{i=0}^{\infty} a^{i}=\frac{1}{1-a} \text { for } 0<a<1 \tag{4}\\
& \sum_{i=1}^{n} \frac{i}{2 i}=2-\frac{n+2}{2^{n}} \tag{5}\\
& \sum_{i=0}^{n} a^{i}=\frac{a^{n+1}-1}{a-1} \text { for } a \neq 1
\end{align*}
$$

Graphs

- An undirected graph, or simply a graph, is a set of points with lines connecting some of the points.
- The points in a graph are called nodes or vertices, and the lines are called edges
- The degree of a node is the number of edges at a particular node.
- In a graph G that contains nodes i and j, the pair (i,j) represents the edge that connects i and j.
- In undirected graphs, the pairs (i,j) and (j,i) are equivalent and can be represented with sets as in $\{i, j\}$.
- If V is the set of nodes of G and E is the set of edges, we say $G=(V, E)$. A graph can then be described with a diagram or more formally by specifying V and E .
- A labeled graph has nodes and edges labeled.
- G is a subgraph of graph H if the nodes of G are a subset of the nodes of H and the edges of G are the edges of H on the corresponding nodes.
- A path in a graph is a sequence of nodes connected by edges.
- A simple path is a path that does not repeat any nodes.
- A graph is connected if every two nodes have a path between them.

Graphs

- A path is a cycle if it starts and ends in the same node.
- A simple path is one that contains at least three nodes and repeats only the first and last node.
- A tree is a graph if it is connected and has no simple cycles.
- A tree may contain a specially designated node called the root.
- The nodes of degree 1 in a tree, other than the root, are called the leaves of the tree.
- A directed graph has arrows instead of lines.

Graphs

- The number of arrows pointing from a particular node is the outdegree of that node.
- The number of arrows pointing to a particular node is the indegree of that node.
- In a directed graph, we represent an edge from i to j as a pair (i,j).
- A path which all the arrows point in the same direction as its steps is called a directed path.
- A directed graph is strongly connected if a directed path connects every two nodes.

Strings and Languages

- Strings of characters are fundamental building blocks in CS. The alphabet over which the strings are defined may vary with the application.
- An alphabet is defined as a nonempty finite set. The members of the alphabet are the symbols of the alphabet.
- \sum and Γ are used to designate alphabets.

Strings and Languages

- A string over an alphabet is a finite sequence of symbols from that alphabet, usually written next to one another and not separated by commas.
- If $\sum=\{0,1\}$ then 001101 is a string over \sum.
- If w is a string over \sum, the length of w, written $|\mathrm{w}|$, is the number of symbols that it contains.
- The string of length of zero is called the empty string and is written ε

Boolean Algebra

Definition of a Proposition:

- A proposition is a sentence that is either true or false but not both.
- Boolean Logic is a mathematical system built around the notion of proposition and two values TRUE and FALSE.
- The values TRUE and FALSE are called the Boolean values and are represented as 1 and 0

Boolean Operators: Negation

- Let's have the proposition " Logic is confusing"
- The negation of p, denoted $\neg p$ is the proposition:
"not p " or "it is not the case that p ".
- It has the opposite truth value from p :
- if p is true, $\neg p$ is false; if p is false, $\neg p$ is true

Negation Truth Table

The truth-value of the proposition $\neg p$ is defined by the truth table:

Boolean Operators: Conjunction

- Let p and q be propositions.
- The conjunction of p and q, denoted: $p \wedge q$ is the proposition p and q.
- It is True when and only when both p and q are true.
- If p is false or q is false or both are false, then $p \wedge q$ is false

Conjunction Truth Table

p	q	$p \wedge \boldsymbol{q}$
T	T	T
T	F	F
F	T	F
F	F	F

Boolean Operators: Disjunction:

Let p and q are propositions, the disjunction of p and q is " p or q " denoted $p \vee q$.

- It is true when either p is true or q is true or both p and q are true;
- it is false only when both p and q are false.

Disjunction Truth Table

p	q	$p \vee q$
T	T	T
T	F	T
F	T	T
F	F	F

Logical Propositions

- Tautology
- We say that a compound proposition C is a tautology if C is True for any truth-value of its propositions ($p \vee \neg p$)
- For example let p : it is raining
- The compound proposition $p \vee \neg p$ (it is raining or it is not raining) is a tautology.
- Contradiction:
- We say that a compound proposition C is a contradiction if C is false for any combination of truthvalues of its components ($p \wedge$ not p)
- For example let p : it is raining
- The compound proposition $\mathrm{p} \wedge \neg \mathrm{p}$ (it is raining and it is not raining) is a contradiction.

Logical Operators: Conditional

- If p and q are propositions, the compound proposition: if \mathbf{p} then q
is called a conditional proposition and is denoted: $\mathbf{p} \rightarrow \mathbf{q}$
- The proposition \mathbf{p} is called the hypothesis (or antecedent) and the proposition \mathbf{q} is called the conclusion (or consequent)

Conditional Truth Table

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

Converse of a proposition

Let p and q be propositions, such that $p \rightarrow q$,
we call the proposition $q \rightarrow p$ the converse of the proposition $p \rightarrow q$

Biconditional Proposition:

- If p and q are propositions, the compound proposition: q if and only if p
is a called a biconditional proposition and is denoted: $q \leftrightarrow p$
- p if and only if q is the same as saying that p is a necessary and sufficient condition for q, it is written as "p iff q"

Truth table for iff

p	q	$p \rightarrow q$	$q \rightarrow p$	$p \rightarrow q \wedge q \rightarrow p$	$p \leftrightarrow q$
T	T	T	T	T	T
T	F	F	T	F	F
F	T	T	F	F	F
F	F	T	T	T	T

Precedence of Logical operators

Operator	Precedence
()	0
\neg	1
\wedge	2
\vee	3
\rightarrow	4
\leftrightarrow	5

Propositional function

- Definition:
- Let $P(x)$ be a statement involving the variable x and let D be a set. We call P a propositional function (with respect to D) if for each x in $D, P(x)$ is a proposition.
- We call D the domain of discourse or domain of P.
- Example: $p(n): n^{2}+2 n$ is an odd integer, ($\mathrm{D}=$ set of positive integers)

Universally quantified statements

- Definition:
- Let P be a propositional function with domain of discourse D, the statement: for every $\mathrm{x}, \mathrm{P}(\mathrm{x})$ is said to be a universally quantified statement.
- This statement may be written $\forall \mathrm{x}, \mathrm{p}(\mathrm{x})$
- The symbol \forall is called a universal quantifier.
- \forall means and reads for all

Truth-value of universally quantified statement

- The statement: $\forall \mathrm{x}, \mathrm{p}(\mathrm{x})$ is true if $p(x)$ is true for every x in D.
- The statement $\forall x, p(x)$ is false if $p(x)$ is false for at least one x in D.

Existentially Quantified Statements

Definition:

- Let P be a propositional function with domain of discourse D, the statement:
- For some $x, p(x)$ is said to be an existentially quantified statement.
- This statement may be written: $\exists \mathbf{x}, \mathbf{p}(\mathbf{x})$
- The symbol \exists is called existential quantifier.
- The symbol \exists means and reads for some, or there exists

Mathematical Proof Techniques

- A mathematical system consists of axioms, definitions and undefined terms.
- An axiom is assumed true.
- Definitions are used to create new concepts in terms of existing ones.
- Undefined terms are only defined implicitly by the axioms.
- Within a mathematical system, we can derive theorems.
- A theorem is a proposition that has been proved true.
- A lemma is a special kind of theorem that is not usually interesting.
- A corollary is a theorem that follows quickly from another theorem.

Theorems

- Theorems are often of the form:

Theorem 1:

- for all $x_{1}, x_{2}, \ldots, x_{n}$, if $p\left(x_{1}, x_{2}, \ldots, x n\right)$ then $q\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- This universally quantified statement is true provided that the conditional statement:
if $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ then $q\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is true for all $x_{1}, x_{2}, \ldots, x_{n}$.

Direct proof

To prove that Theorem is true, we assume that:

1. $x_{1}, x_{2}, \ldots, x_{n}$ are arbitrary members of the domain of discourse.
2. We also assume that $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is true
3. then, using $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ as well as other axioms, definitions and previously derived theorems, we show directly that $\mathrm{q}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right.$) is true

Proof by Contrapositive

Since the implication:
$p \rightarrow q$ is equivalent to its
contrapositive $\neg q \rightarrow \neg p$
the implication $p \rightarrow q$ can be shown by proving its contrapositive

$$
\neg q \rightarrow \neg p \text { is true. }
$$

Deductive reasoning:

- Definition of a valid argument:
- Any argument of the form:
- If p1 and p2 and ...pn then q can be written as a sequence of propositions:
p1
p2
pn
$\therefore \mathrm{q}$

Truth Value for an existentially quantified statement:

- The statement: $\exists \mathbf{x}, \mathbf{p}(\mathbf{x})$ is true if $p(x)$ is true for at least one x in D
- The statement $\exists \mathbf{x}, \mathbf{p}(\mathbf{x})$ is false if $p(x)$ is false for every x in D.
- The propositions p1 p2 ...pn are called the premises or the hypotheses
- q is called the conclusion.
- The argument is valid provided that: if p 1 and $\mathrm{p} 2 \ldots$ and pn are all true, then q must also be true. Otherwise, the argument is invalid or a fallacy.

Rules of Inference

- Modus Ponens:
$p \rightarrow q$
p
\therefore q
- Addition
p
$\therefore \mathrm{p} \vee \mathrm{q}$
- Modus Tollens:
$p \rightarrow q$
$\neg q$
$\therefore \neg p$
- Simplification
- $\mathrm{p} \wedge \mathrm{q}$
- $\therefore \mathrm{p}$

Deductive Reasoning

- Conjunction
p
q
$\therefore \mathrm{p} \wedge \mathrm{q}$
- Disjunctive syllogism
p $\vee \mathrm{q}$
$\neg p$
$\therefore \mathbf{q}$
- Hypothetical syllogism

$$
\begin{aligned}
& p \rightarrow q \\
& q \rightarrow r
\end{aligned}
$$

$\therefore \mathrm{p} \rightarrow \mathrm{r}$

Rules of Inference for Universally Quantified Statements

Let x be a universally quantified variable in the domain of discourse D, such that $p(x)$ is true.
Universal instantiation: $\forall x \in \mathrm{D} P(x)$

$$
\therefore \mathrm{P}(\mathrm{~d}) \text { if } \mathrm{d} \in \mathrm{D}
$$

Universal generalization: $P(d)$ for any $d \in D$

$$
\therefore \forall \mathrm{x} \in \mathrm{DP}(\mathrm{x})
$$

Rules of inference for Existentially Quantified Statements

- Existential instantiation:
$\exists x \in D P(x)$
$\therefore \mathrm{P}(\mathrm{d})$ for some $\mathrm{d} \in \mathrm{D}$
Existential generalization:
$P(d)$ for some $d \in D$
$\therefore \exists \mathrm{x} \in \mathrm{DP}(\mathrm{x})$

Quantifiers and Logical Operators

- $\forall \mathrm{x}[\mathrm{p}(\mathrm{x}) \wedge \mathrm{q}(\mathrm{x})] \Leftrightarrow[\forall \mathrm{xp}(\mathrm{x}) \wedge \forall \mathrm{xq}(\mathrm{x})]$
- $\forall \mathrm{x}[\mathrm{p}(\mathrm{x}) \vee \mathrm{q}(\mathrm{x})] \Leftrightarrow[\forall \mathrm{xp}(\mathrm{x}) \vee \forall \mathrm{x}(\mathrm{x})]$
- $\exists x[p(x) \wedge q(x)] \Leftrightarrow[\exists x p(x) \wedge \quad \exists x q(x)]$
- $\exists x[p(x) \vee q(x)] \Leftrightarrow[\exists x p(x) \vee \exists x q(x)]$

Proof by counterexample:

- The simplest way to disprove a theorem or statement is to find a counterexample to the theorem.
- No number of examples supporting a theorem is sufficient to prove that the theorem is correct.
- However if we find an example that does not support the theorem, then we have proved that theorem is false.

Proof by Mathematical induction:

- Mathematical induction states that Thrm is true for any value of parameter $\mathrm{n}(\mathrm{n}>\mathrm{c}$ where c is some constant) if the following two conditions are true:
- Base Case: Show that Thrm holds for $\mathrm{n}=\mathrm{c}$, and
- Assume that Thrm holds for n-1
- Induction step: If Thrm holds for n-1, then prove that Thrm holds for n.

Example: Geometric Sum

- Base Case: Show that Thrm holds for $\mathrm{n}=\mathrm{c}$, and Assume that Thrm holds for $\mathrm{n}-1$
- Induction step: If Thrm holds for $\mathrm{n}-1$, then prove that Thrm holds for n.
- Use induction to show that if $r \neq 1$,

$$
a+a r^{1}+a r^{2}+\ldots .+a r^{n}=\frac{a\left(r^{n+1}-1\right)}{r-1} \text { for } n=0,1, \ldots, n
$$

