
Similarity Measures 

Similarity and dissimilarity are important because 

they are used by a number of data mining 

techniques, such as clustering nearest neighbor 

classification and anomaly detection. 

The term proximity is used to refer to either 

similarity or dissimilarity. 

Definitions: 

The similarity between two objects is a numeral 

measure of the degree to which the two objects are 

alike. Consequently, similarities are higher for pairs 

of objects that are more alike.  Similarities are 

usually non-negative and are often between 0 (no 

similarity) and 1(complete similarity). 

The dissimilarity between two objects is the 

numerical measure of the degree to which the two 

objects are different. Dissimilarity is lower for more 

similar pairs of objects.  

Frequently, the term distance is used as a synonym 

for dissimilarity. Dissimilarities sometimes fall in the 

interval [0,1], but it is also common for them to 

range from 0 to  

Proximity Measures: 

Proximity measures, especially similarities, are 

defined to have values in the interval [0,1].  If the 

similarity between objects can range from  1 (not at 

all similar) to 10 (completely similar), we can make 

them fall into the range [0,1] by using the formula: 



s’=(s-1)/9, where s and s’ are the original and the 

new similarity values, respectively. 

The more general case, s’ is calculated as  

s’=(s-min_s)/(max_s-min_s), where min_s and 

max_s are the minimum and maximum similarity 

values respectively. 

Likewise, dissimilarity measures with a finite range 

can be mapped to the interval [0,1]  by using the 

formula d’=(d-min_d)/(max_d- min_d). 

If the proximity measure originally takes values in 

the interval [0, ], then we usually use the formula: 

d’= d/(1+d) for such cases and bring the 

dissimilarity measure between [0,1]. 

Similarity and dissimilarity between simple 

attributes: 

The proximity of objects with a number of attributes 

is defined by combining the proximities of individual 

attributes. 

-Attribute Types and Similarity Measures: 

1) For interval or ratio attributes, the natural 

measure of dissimilarity between two attributes is 

the absolute difference of their values. For example, 

we might compare our current weight to our weight 

one year ago. In such cases the dissimilarities range 

from 0 to . 

 2) For objects described with one nominal attribute, 

the attribute value describes whether the attribute is 

present in the object or not. Comparing two objects 

with one nominal attribute means comparing the 

values of this attribute. In that case, similarity is 



traditionally defined as 1 if attribute values match 

and as 0 otherwise. A dissimilarity would be defined 

in the opposite way: 0 if the attribute values match, 

1 if they do not. 

3) For objects with a single ordinal attribute, 

information about order should be taken into 

account. Consider an attribute that measures the 

quality of a product on the scale {poor, fair, OK, 

good, wonderful}.  It would be reasonable that a 

product P1 which was rated  wonderful  would be 

closer to a product P2 rated good rather than a 

product P3 rated OK. 

To make this observation quantitative, the values of 

the ordinal attribute are often mapped to successive 

integers, beginning at 0 or 1, e.g.{poor=0, fair=1, 

OK=2, good=3, wonderful=4}.   

Then d(P1-P2) =4-3 =1 

In the table below, x and y are two objects that have 

one attribute of the indicated type, and d(x,y) and 

s(x,y) are the dissimilarity and similarity between x 

and y, respectively. 

 

 

 

 

 

 

 

 



Attribute 

Type 

Dissimilarity Similarity 

Interval 

or ratio 

d=|x-y| s=-d, 𝑠 =
1

1+𝑑
, 

s=𝑒−𝑑, 

s=1-
𝑑−min⁡_𝑑

max⁡_𝑑−min⁡_𝑑
 

Nominal 
d=⁡{

0⁡𝑖𝑓⁡𝑥 = 𝑦
1⁡𝑖𝑓⁡𝑥⁡ ≠ 𝑦⁡

 s= {⁡
1⁡𝑖𝑓⁡𝑥 = 𝑦
0⁡𝑖𝑓⁡𝑥⁡ ≠ 𝑦⁡

 

Ordinal d= 
|𝑥−𝑦|

(𝑛−1)
 

(values mapped to 

integers 0 to n-1 where 

n is the number of 

values) 

s= 1-d 

 

Dissimilarities between Data Objects: 

 

Distances: 

Distances are dissimilarities with certain properties. 

The Euclidian distance, d,  between two points , x 

and y in one , two or higher dimensional space is 

given by the formula: 

 

d(x, y) = √∑ (𝑥𝑘 − 𝑦𝑘)
2𝑛

𝑘=1  

where n is the number of dimensions and xk  and yk  

are, respectively, the kth attribute (component) of  x 

and y. 

 



The Euclidian distance measure is given generalized 

by the Minkowski distance metric shown as: 

    d(x,y) = (∑ |𝑥𝑘 − 𝑦𝑘|
𝑟𝑛

𝑘=1 )1/𝑟 

where r is a parameter.  

The following are the 3 most common examples of 

Minkowski distances: 

 r = 1 also known as City block (Manhattan or L1 

norm) distance. A common example is the 

Hamming distance, which is the number of 

bits that are  different between two objects that 

only have binary attributes (i.e., binary vectors) 

 r=2. Euclidian distance (L2 norm). 

 r= . Supremum, (Lmax or L norm) distance. 

This is the maximum difference between any 

attributes of the objects. The L is defined more 

formally by: 

d(x, y)= lim𝑟→∞(∑ |𝑥𝑘 − 𝑦𝑘|
𝑟𝑛

𝑘=1 )1/𝑟 

 

Note: r should not be confused with the number 

of dimensions or attributes n. 

  

Point x coordinate y coordinate 

p1 0 2 

p2 1 0 

p3 2 1 

 

L2 distance:  



 p1 p2 p3 

p1 0 √𝟓 √𝟓 

p2 √𝟓 0 √𝟐 

p3 √𝟓 √𝟐 0 

  

L1 distance: 

 p1 p2 p3 

p1 0  3 

p2 3 0 2 

p3 3 2 0 

 

 

Similarities between Data Objects: 

s(x, y) is the similarity between points x and y, then 

typically we will have 

1. s(x, y) =1 only if x=y. (0  s  1) 

2. s(x, y) = s (y, x) for all x and y. (Symmetry) 

 

 

Non-symmetric Similarity Measures – confusion 

matrix- 

Consider an experiment in which people are asked to 

classify a small set of characters as they flash on the 

screen. The confusion matrix for this experiment 

records how often each character is classified as 

itself, and how often it is classified as another 



character. For example, suppose “0” appeared 200 

times and was classified as “0” 160 times but as “o” 

40 times.  Likewise, suppose that “o” appeared 200 

times and was classified as “o” 170 times and as “0” 

30 times. 

If we take these counts as a measure of similarity 

between the two characters, then we have a 

similarity measure, but not a symmetric one. 

s(“0”, “o”) =40/2 = 20% 

s(“o”, “0”) = 30/2 = 15% 

 

In such situations, the similarity measure is often 

made symmetric by setting 

s’(x,y) = s’(y,x) = (s(x,y)+ (s(y,x))/2 

s’(“0”, “o”)= s’(“o”, “0”)= (20+15)/2 = 17.5% 

 

Similarity Measures for Binary Data 

Similarity measures between objects that contain 

only binary attributes are called similarity 

coefficients, and typically have values between 0 

and 1. A value of 1 indicates that the two objects are 

completely similar, while a value of 0 indicates that 

the objects are not at all similar.  

Let x  and y  be two objects that consist of n binary 

attributes. The comparison of 2 such objects, i.e. two 

binary vectors, leads to the following four quantities 

(frequencies): 

f00= the number of attributes where x is 0 and y is 0 

f01= the number of attributes where x is 0 and y is 1 



f10= the number of attributes where x is 1 and y is 0 

f11= the number of attributes where x is 1and y is 1 

Simple Matching Coefficient (SMC) One 

commonly used similarity coefficient is defined as: 

𝑆𝑀𝐶 = ⁡
𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔⁡𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒⁡𝑣𝑎𝑙𝑢𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠

= ⁡
𝑓11 + 𝑓00

𝑓11 + 𝑓00 + 𝑓10 + 𝑓01
 

 

This measure counts both presences and absences 

equally.  

Jaccard Coefficient In some situations, only the 

presence of an item is relevant, supposed we want to 

do a basket market study, if we were to count all 

items that a person did not buy, their number will 

outnumber the items purchased by far and it can 

compromise our study.  The Jaccard coefficient (J) 

is often used in this type of situation in which we 

have asymmetric binary attributes. 

𝐽 = ⁡
𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔⁡𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑠⁡

𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠⁡𝑛𝑜𝑡⁡𝑖𝑛𝑣𝑜𝑙𝑒𝑑⁡𝑖𝑛⁡00⁡𝑚𝑎𝑡𝑐ℎ𝑒𝑠

= ⁡
𝑓11

𝑓11 + 𝑓10 + 𝑓01
 

 

Cosine Similarity: 

Documents are often represented as vectors, in 

which each attribute represents the frequency with 

which a particular term (word) occurs in the 

document. Even though documents may have 



thousands or tens of thousands of words, each 

document is sparse since it has few  non zero 

attributes. Therefore, a similarity measure for 

documents needs to ignore 0-0 matches like he 

Jaccard measure, but must handle non-binary 

vectors. The cosine similarity is the most common 

measure of document similarity. 

if x and y are 2 documents, then: 

cos(x,y)=
𝑥.𝑦⁡

||𝑥||||𝑦||′
 

where . indicates the vector . product, x.y = 
∑ 𝑥𝑘 . 𝑦𝑘
𝑛
𝑘=1  

and ||x|| is the length of the vector x, ||x||= 

√∑ 𝑥𝑘
2𝑛

𝑘=1  

 

Cosine similarity is a measure of the (cosine of the) 

angle between x and y. Thus if the cosine similarity 

is 1, the angle between x and y is 0 and x and y are 

the same except for magnitude. 

If the cosine similarity is 0, then the angle between x 

and y is 90, then they do not share any terms 

(words). 

 

Correlations: 

The correlation between two data objects that have 

binary or continuous variables is a measure of the 

linear relationship  between the attributes of the 

objects.  More precisely, Pearson’s correlation 

coefficient between two data objects , x and y, is 

defined by the following equation: 



corr(x,y)=
𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑥,𝑦)

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑⁡𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑥)∗𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑⁡𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑦)
=

𝑠𝑥𝑦

𝑠𝑥𝑠𝑦
 

 

where the standard statistical notations are used. 

covariance(x,y) =sxy= 
1

𝑛−1
∑ (𝑥𝑘 − 𝑥̅)(𝑦𝑘 − 𝑦̅)𝑛
𝑘=1  

standard deviation(x) = sx= √
1

𝑛−1
∑ (𝑥𝑘 − 𝑥̅)2𝑛
𝑘=1 ⁡ 

standard deviation(y) = sy= √
1

𝑛−1
∑ (𝑦𝑘 − 𝑦̅)2𝑛
𝑘=1 ⁡ 

 

𝑥̅ =
1

𝑛
∑ 𝑥𝑘
𝑛
𝑘=1    is the mean of  x (average) 

 

𝑦̅ =
1

𝑛
∑ 𝑦𝑘
𝑛
𝑘=1    is the mean of  y (average) 

 

Perfect correlation: 

Correlation is always in the range of -1 to 1. A 

correlation of 1 (-1) means that x and y have a 

perfect positive (negative) linear relationship; that is  

xk= ayk+b 

 

The following two sets of values for x and y indicate 

cases where the correlation is -1 and +1  

1) x = (-3, 6, 0, 3, -6)  y= (1, -2, 0, -1, 2) 

2) x= (3,6, 0, 3, 6)   y= (1, 2,0,1,2) 

 



Correlation measures are only useful if/when the 

relationship between attributes is linear. So if the 

correlation is 0, then there is no linear relationship 

between the two data objects.  However, a non-

linear relationship may still exist. For example 

x=(-3, -2, -1, 0, 1, 2, 3) 

y=(9,   4,   1, 0,1,  4, 9) 

The relationship between x and y is ??? 

xk= (yk)
2 

Correlation =0 

 


