The Entity Relationship Model (ERM)

The Entity Relationship Model is a representation of the
conceptual database as viewed from the end user perspective.

The various notations used are the Chen notation and the
Crow’s Foot and the UML notations.

Entities:

An entity is an object of interest to the end user. An entity
corresponds to a table. In all notations, an entity is
represented by a rectangle that contains the entity’s name
written in capital letters.

Attributes:

Attributes are characteristics of entities and are usually
represented as fields of the tables at the implementation level.
In the Chen model, attributes are represented as ovals, each
containing the name of the attribute it represents. In the
Crow’s Foot notation, the attributes are written in the attribute
box below the entity rectangle.

Chen Model Crow’s Foot Model

STUDENT
STU-LNAME

STUDENT

STU-LNAME

STU-FNAME

A

STU-INITIAL

STU-EMAIL

STU-PHONE

Required and Optional Attributes:

A required attribute is an attribute that must have a value, and
it cannot be left empty. The two boldfaced attributes in the
Crow’s Foot notation indicate that the data entry is required.

An optional attribute is an attribute that does not require a
value, it can be left empty.

Domains:

A domain is the set of possible values for a given attribute.
Attribute may share a domain. The same attribute name is used
for different entities, and then they share the same domain.

Identifiers or Primary keys:

In ERM, an identifier is one or more attributes that uniquely
identify each instance or tuple. In the relational model, entities
are mapped to tables and the entity identifier is mapped as the
table’s primary key (PK). Identifiers and primary keys are
underlined in the ERD.

Key attributes are also underlined in the relational schema:
TABLE_NAME (KEY_ATTRIBUTE1, ATTRIBUTE2, , ATTRIBUTE K)

Composite Identifiers:

Ideally, an entity identifier is only composed of only a single
attribute. However, it is possible to have a composite identifier,
which is a primary key that is composed of more than one
attribute.

Composite and Simple Attributes:

Attributes are classified as simple or composite. A composite
attribute is an attribute that can be further subdivided to yield
additional attributes. For example, the attribute
PHONE_NUMBER can be subdivided into area code and
exchange number.

Single_valued attribute:

A single-valued attribute is an attribute that can have only a
single value. For example, a person can have only one SSN.

A single valued attribute is not necessarily a simple attribute.
For instance, a part’s serial number such as SE-08-02-16745 is
single-valued but is a composite attribute that can be divided

into the production region SE, the plant within the region: 08,
the shift: 02 and the part number.

Multi-valued Attributes:

Multi-valued attributes are attributes that can have many
values. For example, a person may have several college degrees
, and a household may have several phone numbers. In the
Chen ERM, multivalued attributes are shown by a double line
connecting the attribute to the entity. The Crow’s Foot
notation does not identify multivalued attributes.

CAR YEAR

Implementing Multi-valued Attributes:

Although conceptually, the model can handle M:N relationships
and mutivalued attributes, they cannot be implemented in the

RDBMS. So, if multivalued attributes exist, the designer must
decide two possible course of action:

1. Within the original entity, create several new attributes,
one for each component of the original mutivalued
attribute. For example, the CAR entity’s attribute
CAR_COLOR can be split to create new attributes
CAR_TOPCOLOR, CAR_BODYCOLOR and CAR_TRIMCOLOR
which are then assigned to the CAR entity. The problem
with this approach is that if there are many options for
some tuples and not for all tuples, then the values for
most of the new attributes is going to be NULL.

2. Create a new entity composed by the original multivalued
attribute’s components. The new entity allows the
designer to define different values for the attribute. Doing
it this way, allows us to define as many colors for the car
as needed without having to change the table structure.
This is the preferred way to deal with multivalued
attributes. Creating a new entity in a 1:M relationship with
the original entity yields several benefits: it is more
flexible, expandable solution, and it is compatible with the
relational model.

Derived Attributes:

A derived attribute or a computed attribute is an attribute
whose value is calculated (derived) from other attributes.
The derived attribute need not be physically stored in the
database.

Relationships:

A relationship is an association between entities. The
entities that participate in a relationship are also called
participants. A relationship between entities always
operates in both directions. To define the relationship
between the entities name, entity relationships may be
classified as one-to-one, one-to-many, or many-to-many.

Connectivity and Cardinality:

Cardinality expresses the minimum and maximum
number of tuples associated with one tuple of the related
entity. In the ERD cardinality is indicated by placing the
appropriate number besides the entities, using the format
(x,y). The first value represents the minimum number of
associated tuples, while the second value represents the
maximum number of associated tuples.

PROFESSOR teaches CLASS

4N

(1:2) (1,4)

(1:4) means that each professor teaches up to 4 classes. This
means that a PROFESSOR’ tuple primary key occurs at least
once and at most four times as a foreign key values in the
CLASS table.

(1:1) indicates that each class is taught by one and only one
professor. That is each tuple from the CLASS table is associated
with one and only one tuple from the PROFESSOR’s table.

Existence Dependence:

An entity is said to be existence-dependent if it can exist in the
database only when it is associated with another related entity.

In implementation terms, an entity is existence-dependent if it
has a mandatory foreign key, which cannot be NULL. Example:
an employee dependents entity can only exists if there is a
tuple for a specific employee in the EMPLOYEE table.

Strong Entities: If an entity can exist apart from all its related
entities, then it is existence-independent and it is referred to as
strong entity or regular entity.

Relationship Strengths: (Strong Relationships)

The concept of relationship strength is related on how primary
keys (PK) are defined among entities. To implement a
relationship, the primary key of one entity (the parent entity,
normally on the “one” side of the one-to-many relationship)
appears as a foreign key (FK)in the related entity (the “many”
side on the one-to-many relationship). Sometimes, the foreign
key is also a primary key in the related entity.

Weak or Non_identifying Relationships:

A weak relationship exists if the primary key of the related
entity does not contain a primary key component of the parent
entity. By default, relationships are established by having the
primary key of the parent entity appear as a foreign key on the
related entity(child entity)

Example, suppose we have a 1:M relationship between COURSE
and CLASS as:
COURSE(CRS_CODE,DEPT_CODE,CRS_DESCRIPTION,CRS_CREDIT)

CLASS(CLASS CODE, CRS_CODE, CLASS-SECTION, CLASS_TIME,
ROOM_CODE, PROF_NUM)

In this case, a weak relationship exists between COURSE and
CLASS, because the PK of COURSE is a FK for CLASS.

In the CROW notation, a weak relationship is represented by
placing a dashed relationship line between entities

COURSE CLASS
PK CRS CODE PK CLASS CODE
DEPT_CODE FK1 CRS_CODE
generates

CRS_DESCRIPTION CLASS_SECTION

CRS_CREDIT H """"""""" K CLASS_TIME
ROOM_CODE
PROF_NUM

Strong (Identifying) Relationships:

A strong relationship exists when the primary key of the related
entity contains a primary key component of the parent entity.
For example, suppose the 1:M relationship between CLASS and
COURSE is defined as:

COURSE(CRS_CODE, DEPT_CODE, CRS_DESCRIPTION, CRS_CREDIT)

CLASS(CRS _CODE, CLASS CODE, CLASS-SECTION, CLASS_TIME,
ROOM_CODE, PROF_NUM)

In this case, the CLASS entity primary key is composed of
CRS_CODE and CLASS_SECTION. Therefore, a strong
relationship exists between COURSE and CLASS.

Weak Entities:

In contrast to strong or regular entities mentioned earlier, a
weak entity is one that meets two conditions:

1. The entity is existence-dependent, it cannot exist without
the entity with which it has a relationship.

2. The entity has a primary key that is partially or totally
derived from the parent entity in the relationship.

For example, a company insurance policy may cover an
employee and their dependents. An EMPLOYEE may or may
not have any DEPENDANTS, however a DEPENDENT must be
associated with an EMPLOYEE and if the EMPLOYEE is
deleted then the DEPENDENT is also deleted. DEPENDENT is
a weak entity in the relationship “EMPLOYEE has
DEPENDENT”.

Relationship Participation:

Participation in a relationship is either optional or
mandatory.

Optional participation: means that one entity occurrence
does not require a corresponding entity occurrence in the

relationship. For example, an EMPLOYEE may have no
DEPENDENT. Therefore the DEPENDENT entity is optional for
the EMPLOYEE entity. The Crow’s Foot notation, an optional
relationship is shown by drawing a small circle(O) on the side
of the optional entity. The corresponding minimal cardinality
is O.

Mandatory participation: means that one entity occurrence
requires a corresponding entity recurrence in a particular
relationship. If no optionality symbol is depicted, the
relationship is assumed to be mandatory. The existence of a
mandatory participation implies a connectivity of 1 and a
minimum cardinality of 1.

Relationship degrees:

A relationship degree indicates the number of entities or
participants associated with the relationship.

A unary relationship exists when an association is maintained
within a single entity. For example: an employee within the
EMPLOYEE entity is the manager of one or more employees
within the entity. In this case, the "manages" relationship
means that EMPLOYEE requires that another EMPLOYEE be
the manager that is EMPLOYEE has a relationship with itself .

This is known as a recursive relationship. Recursive
relationships are represented like:

manages

i)

EMPLOYEE

A binary relationship requires two entities to be related.
These are the most common type of relationships and
usually higher order relationships are decomposed into
appropriate equivalent binary relationships.

A ternary relationship exists when three entities are related.
Although, they are rare, they are sometimes necessary. A
ternary relationship implies an association among three
different entities. Example:

e A DOCTOR writes one or more PRESCRPTIONS
e A PATIENT may receive one or more PRESCRIPTIONS
e A DRUG may appear in one or more PRESCRIPTIONS.

A doctor can be scheduled for many appointments, but
may not have any scheduled at all. Each appointment is
scheduled with exactly 1 doctor. A patient can schedule 1
or more appointments. One appointment is scheduled
with exactly 1 patient.

An appointment must generate exactly 1 bill, a bill is
generated by only 1 appointment. One payment is applied
to exactly 1 bill, and 1 bill can be paid off over time by
several payments. A bill can be outstanding, having
nothing yet paid on it at all. One patient can make many
payments, but a single payment is made by only 1 patient.
Some patients are insured by an insurance company. If
they are insured, they can only carry insurance with one
company. An insurance company can have many patients
carry their policies. For patients that carry insurance, the
insurance company will make payments, each single
payment is made by exactly 1 insurance company.

