
Context free languages

People intuitively recognize when a sentence spoken in the native
language is correct or not. We act as language recognizers. A
language recognizer is a device that accepts valid strings produced
in a given language. The finite state automata of the last chapter
are formalized types of language recognizers.

We are also capable of producing legal sentences, at least in our
mother tongue. So we occasionally speak and write legal sentences
(even if there are lies). In this respect, we act as language
generators.
A language generator begins, when given a start signal, to
construct a string. Its operation is not completely determined from
the beginning but is limited by a set of rules.

Regular expressions can be viewed as language generators. For
example, consider the regular expression a(a* ∪ b*)b.
A verbal description of how to generate a string in accordance with
this expression would be:
First output an a. Then do one of the
following two things:
 Either output a number of a’s or output a
 number of b’s
 Finally output a b.

In this chapter, we will study certain more complex sorts of
language generators, called context-free grammars, which are
based on a more complete understanding of the structure of the
strings belonging to the language.

To take the example of : a(a* ∪ b*)b, we can describe the strings
generated by this language as consisting of a leading a, followed
by a middle part M, to be made explicit later on, followed by a

trailing b. Let S be a new symbol interpreted as “ a string in the
language”, we can express this observation by writing:
 S aMb

 is read can be. We call such an expression a rule.

What can M be? either a string of a’s or a string of b’s. We express
this by adding:

 M A
 M B
Where A and B are new symbols that stand for strings of a’s and
b’s respectively.
Now, let’s define a string of a’s.
First, it can be empty, so we add the rule:
 A ε
or it may consist of a leading a followed by a string of a’s’
 A aA.

Similarly for B:
 B ε and
 B bB

The language denoted by the regular expression a(a* ∪ b*)b can
be defined by the following rules:
 S aMb
 M A
 M B
 A ε
 A aA.
 B ε
 B bB

For example to generate the string aaab:

1. we start with the symbol S, as specified;

2. we replace S by aMb according to the first rule, S aMb.
3. To aMb we apply the rule M A and obtain aAb.
4. We then twice apply the rule A aA to get the string aaaAb.
5. Finally we apply the rule A ε
6. In the resulting string aaab we cannot identify any symbol

that appears to the left of in some rule, thus the operation
of our generator has ended and aaab was produced.

A context-free grammar is a language generator that operates
with a set of rules. Context-free grammars are a more powerful
method of representing languages.

Such grammars can describe features that have a recursive
structure.

In a context free grammar, some symbols appear to the left of

 in rules -S, M, A, B- in our example,
and some do not -a and b- Symbols of the latter kind are called
terminals, since the string is made up of these symbols. The
other symbols are called non-terminal symbols.
The rule of the form X Y is called a production rule or a
substitution rule.

An important application of context-free grammars occurs in the
specification and compilation of programming languages.

Definition of Context-Free Grammars:

Four important components in a grammatical description of a
language:

1. There is a finite set of symbols that forms strings of the
language being defined. We call this set the terminals or
terminal symbols.

2. There is a finite set of variables, also called nonterminals
or syntactic categories. Each variable represents a
language; i.e. a set of strings/

3. One of the variables represents the language being
defined; it is called the start symbol. Other variables
represent auxiliary classes of strings that are used to help
define the language of the start symbol.

4. There is a finite set of productions or rules that represent
the recursive definition of a language. Each production
consists of:

a. A variable that is being (partially) defined by the
production. This variable is often called the head of
the production.

b. The production symbol
c. A string of zero or more terminals and variables.

This string called the body of the production,
represents one way to form strings in the language of
the variable of the head. In so doing, we leave
terminals unchanged and substitute for each variable
of the body any string that is known to be in the
language.

The four components just described form a context free
grammar.

Formal Definition of a Context Free Grammar:

A context free grammar is a 4-tuple (V,∑, R, S) where:

1. V is a finite set called the variables, or nonterminals
2. ∑ is a finite set, disjoint from V, called the terminals
3. R is a finite set of rules, with each rule being a variable

and a string of variables and terminals and
4. S ∈ V is the start variable

 If u, v and w are strings of variables and terminals, and

 A w is a rule of the grammar, we say that uAv yields
 uwv.

We say that u derives v, written vu
*
⇒ , if

1. u =v or
2. if a sequence u1, u2, …uk exists for k ≥ 0, such that u ⇒ u1⇒

u2…..⇒ uk ⇒ v

Consider grammar G4= (V, ∑, R, <EXPR>)

 V ={ <EXPR>, <TERM>, <FACTOR>} and
 ∑={a, +, x, (,)}.
 The rules are:
 <EXPR> <EXPR> + <TERM> | <TERM>
 <TERM> <TERM> x <FACTOR> | <FACTOR>
 <FACTOR> (<EXPR>) | a

The two strings a+a x a and (a+ a) x a can be generated with
grammar G.

Parsing

A compiler translates code written in a programming language into
another form, usually more suitable for execution. This process is
called parsing.

Parse Trees

A parse tree for a grammar G is a tree where:

• the root is the start symbol for G
• the interior nodes are the nonterminals of G
• the leaf nodes are the terminal symbols of G.

• the children of a node T (from left to right) correspond to the
symbols on the right hand side of some production for T in
G.

Every terminal string generated by a grammar has a corresponding
parse tree; every valid parse tree represents a string generated by
the grammar (called the yield of the parse tree).

Example: Given the following grammar, find a parse tree for the
string

 1 + 2 * 3:

1. <E> --> <D>
2. <E> --> (<E>)
3. <E> --> <E> + <E>
4. <E> --> <E> - <E>
5. <E> --> <E> * <E>
6. <E> --> <E> / <E>
7. <D> --> 0 | 1 | 2 | ... 9

The parse tree is:

 E --> E --> D --> 1
 +
 E --> E --> D --> 2
 *
 E --> D --> 3

Ambiguous Grammars

A grammar for which there are two different parse trees for the
same terminal string is said to be ambiguous.

The grammar for balanced parentheses given earlier is an example
of an ambiguous grammar:

 P --> (P) | P P | epsilon

We can prove this grammar is ambiguous by demonstrating two
parse trees for the same terminal string.

Here are two parse trees for the empty string:

 1) P --> P --> epsilon
 P --> epsilon

 2) P --> epsilon

Here are two parse trees for ():

 P --> P --> (
 P --> epsilon
)
 P --> epsilon

 P --> P --> epsilon
 P --> (
 P --> epsilon
)

To prove that a grammar is ambiguous, it is sufficient to
demonstrate that the grammar generates two distinct parse trees for
the same terminal string.

An unambiguous grammar for the same language (that is, the set of
strings consisting of balanced parentheses) is:

 P --> (P) P | epsilon

The Problem of Ambiguous Grammars

A parse tree is supposed to display the structure used by a grammar
to generate an input string. This structure is not unique if the
grammar is ambiguous. A problem arises if we attempt to impart
meaning to an input string using a parse tree; if the parse tree is not
unique, then the string has multiple meanings.

We typically use a grammar to define the syntax of a programming
language. The structure of the parse tree produced by the grammar
imparts some meaning on the strings of the language.

If the grammar is ambiguous, the compiler has no way to
determine which of two meanings to use. Thus, the code produced
by the compiler is not fully determined by the program input to the
compiler.

Ambiguous Precedence

The grammar for expressions given earlier:

1. <E> --> number
2. <E> --> (<E>)
3. <E> --> <E> + <E>
4. <E> --> <E> - <E>
5. <E> --> <E> * <E>

6. <E> --> <E> / <E>

This grammar is ambiguous as shown by the two parse trees for
the input string: “number + number * number”:

 E --> E --> number
 +
 E --> E --> number
 *
 E --> number

 E --> E --> E --> number
 +
 E --> number
 *
 E --> number

The first parse tree gives precedence to multiplication over
addition; the second parse tree gives precedence to addition over
multiplication. In most programming languages, only the former
meaning is correct. As written, this grammar is ambiguous with
respect to the precedence of the arithmetic operators.

Ambiguous Associativity

Consider again the same grammar for expressions:

1. <E> --> number
2. <E> --> (<E>)
3. <E> --> <E> + <E>
4. <E> --> <E> - <E>
5. <E> --> <E> * <E>
6. <E> --> <E> / <E>

This grammar is ambiguous even if we only consider operators at
the same precedence level, as in the input string “number - number
+ number”:

 E --> E --> number
 -
 E --> E --> number
 +
 E --> number

 E --> E --> E --> number
 -
 E --> number
 +
 E --> number

The first parse tree (incorrectly) gives precedence to the addition
operator; the second parse tree gives precedence to the subtraction
operator. Since we normally group operators left to right within a
precedence level, only the latter interpretation is correct.

An Unambiguous Grammar for Expressions

It is possible to write a grammar for arithmetic expressions that

• is unambiguous
• enforces the precedence of * and / over + and -
• enforces left associativity

Here is one such grammar:

1. <E> --> <E> + <T> | <E> - <T> | <T>
2. <T> --> <T> * <F> | <T> / <F> | <F>
3. <F> --> (<E>) | number

If we attempt to build a parse tree for number - number + number,
we see there is only one such tree:

 E --> E --> E --> T --> F --> number
 -
 T --> F --> number
 +
 T --> F number

This parse tree correctly represents left associativity by using
recursion on the left. If we rewrote the grammar to use recursion
on the right, we would represent right associativity:

1. <E> --> <T> + <E> | <T> - <E> | <T>
2. <T> --> <F> * <T> | <F> / <T> | <F>
3. <F> --> (<E>) | number

Our grammar also correctly represents precedence levels by
introducing a new non-terminal symbol for each precedence level.
According to our grammar, expressions consist of the sum or
difference of terms (or a single terms), where a term consists of the
product or division of factors (or a single factor), and a factor is a
nested expression or a number.

Chomsky Normal Form:

When working with CFG it is often convenient to have them in
simplified form. One of the simplest and most useful forms is
called the Chomsky normal form. Chomsky normal form or CNF
is useful when giving algorithms for working with CFG.

Definition:

A context free grammar is in Chomsky normal form if every rule is
of the form:
 A BC

 A a

Where a is any terminal and A, B, and C are non terminals
different from the start symbol. In addition, we permit the rule:

 S epsilon, where S is the start symbol.

Theorem:

Any context free language is generated by a context free grammar
in Chomsky normal form.

Proof by construction:

1. Add a new start variable S0 S, where S was the original
start nonterminal. This will guarantee that the new start
variable does not occur on the right-hand side of a rule.

2. We take care of all epsilon rules. We remove ε-rule of the
form A ε, where A is not the start symbol.

 This is how to do it:
 For each occurrence of an A on the right-hand side of a rule,
we add a new rule with that occurrence deleted.
For example: if R uAv is a rule, we add the rule R uv. We
do so for each occurrence of the non-terminal A .
So the rule R uAvAw causes us to generate:

R uvAw
R uAvw
R uvw
We repeat these steps for all rules of the form non-terminal ε

3. We handle unit rules, or rules of the form A B. We remove

the preceding rule. Then, whenever a rule B u appears, we
add a rule A u. u is a string of variables and terminals. We
repeat these steps until we eliminate all unit rules.

4. We convert all remaining rules into the proper form. We

replace each rule of the form A u1u2…uk, where k ≥ 3 and
each ui is a variable or terminal symbol, with the rules

 A u1A1, A1 u2A2,…., and Ak-2 uk-1uk

Pushdown Automata:

The description of context-free languages by means of context
free grammars is convenient. The next question is whether there
is a class of automata that can be associated with context-free
languages.
If such a machine exist, it requires an unbounded memory
(anbn), it requires a counting ability. It requires the ability to
store and match a sequence of symbols. This gives us a class of
machines called pushdown automata (pda)

A stack provides additional memory beyond the finite amount
available. The stack allows pushdown automata to recognize
some nonregular languages.

A pushdown automaton (PDA) can write symbol on the stack
and read them back later.
-Writing a symbol “pushes down” all the other symbols on the
stack. At any time, the symbol on the top can be read and
removed. The remaining symbols then move back up.
-Writing a symbol on the stack is referred to as pushing the
symbol,
-Removing the symbol is referred to as popping it.

A stack is a “last in, first out” storage device and read/write
access can only be done at the top.

Formal definition of a pushdown automaton:

The formal definition of a pushdown automaton is similar to
that of a finite automaton, except for the stack. The stack is a
device containing symbols drawn from some alphabet. The
machine may use different alphabets for its input and its stack.
So we specify both an input alphabet ∑ and a stack alphabet Γ.
The transition function δ which describes the automaton
behavior is defined as δ Q x ∑ε x Γε P(Q x Γε)

A pushdown automaton is a 6-tuple(Q, ∑, Γ, δ, q0, F), where Q,
∑, , Γ, F are all finite sets:

State
Control

a a b b

x

y

z

Input file

stack

1. Q is the set of states.
2. ∑ is the set of input symbols
3. Γ is the stack alphabet
4. δ: Q x ∑ε x Γε P(Q x Γε) is the transition function
5. q0∈ Q is the start state and
6. F ⊆ Q is the set of accept states.

Computation:
A pushdown automaton M =(Q, ∑, Γ, δ, q0, F) computes as
follows:
It accepts input w if w can be written as w= w1w2…wm,
where each wi ∈ ∑ε and sequences of states r0, r1, …rm ∈ Q
and strings s0, s1, …, sm ∈ Γ* exist that satisfy the following 3
conditions: The strings si represent the sequence of stack
contents that M has on the accepting branch of the
computation:

1. r0=q0 and s0= ε. This condition signifies that M starts on
the start state and that the stack is empty.

2. for i=0,…., m-1, we have (ri+1,b) ∈ δ(ri, wi+1,a), where
si=at and si+1 = bt for some a, b ∈ Γε and t ∈ Γ*. This
condition states that M moves properly according to the
state stack, and next input symbol.

3. rm ∈F. This condition states that an accept state occurs
at the input end.

The following is the formal description of the PDA that
recognizes the language {0n1n | n ≥ 0}.

Let M1= (Q, ∑, Γ, δ, q1, F) where
Q={q1, q2, q3, q4},
∑ = {0, 1},
Γ = {0, $},
F= {q1, q4}, and

δ is given by the following table, wherein blank entries
signify
δ can also be defined as such:

δ(q1, 0, ε)= (q2, $)
δ(q2, 0, $)= (q2, 0$)
δ(q2, 0, 0)= (q2, 00)
δ(q2, 1, 0)=(q3, ε)
δ(q3, 1, 0)=(q3, ε)
δ(q3, ε, $)= (q4, ε)

Input 0 1 ε
Stack 0 $ ε 0 $ ε 0 $ ε
q1 (q2,$)
q2 (q2,0) (q2,0) (q3,ε)
q3 (q3,ε) (q4,ε)
q4

Language accepted by a Pushdown Automaton:

Let M be a non-deterministic pushdown automaton, the
language accepted by M is the set of all strings that can
put M into a final state at the end of the string. The final
stack content is irrelevant to this definition of acceptance

Construct a PDA that accepts the following language:
L1= L(aaa*b)

Pushdown Automata and Context-Free Languages:
Theorem:

A language is context free if and only if some pushdown
automaton recognizes it.

Lemma:
If a language is context free, then some pushdown
automaton recognizes it.

Greibach Normal Form:
A context free grammar is said to be in Greibach normal
form if all productions have the form:
 A ax where a is terminal symbol and x is one or more
nonterminal symbols preceded by a terminal symbol:
S AB
A aA|bB|b
B b

Greibach Normal Form:

S aAB| bBB|bB
A aA|bB|b
B b
This concept is important for what follows:

Let A be a Context free language; then there is a CFG G
that generates it.

Procedure on how to convert G into an equivalent
PDA, called P:

1. Place the marker symbol $ and the start variable on
the stack

2. Repeat the following steps forever:

a. if the top of stack is a variable (non-terminal)
symbol A, non deterministically select one of the

rules for A and substitute A by the string on the
right-hand side of the rule.

b. If the top of stack is a terminal symbol a, read the
next symbol from the input and compare it to a. If
they match, pop it repeat step 2. If they do not
match, reject on this branch of the non-
determinism.

c. if the top of stack is the symbol $, enter the accept

state. Doing so accepts the input if it has all been
read.

The corresponding automaton will have three states {q0, q1,
q2}, with initial state q0 and final state q2

1. The start symbol S is put on the stack by
δ(q0, ε, ε)= {(q1, S$)}
2. The production S aSA will be simulated in the pda

by removing S from the stack and replacing it with SA,
while reading a from the input.

3. The rule S a should cause the pda to read a while
removing S.

Thus the two productions are represented in the pda by:
δ(q1, a, S)= {(q1, SA), (q1, ε)}
Rules 2 and 3
4. δ(q1, b, A)= {(q1, B) }
5. δ(q1, b, B)= {(q1, ε)}
Acceptance transition:
6. δ(q1, ε, $)= {(q2, ε)}

The underlying idea is to construct a pda that can carry out a
leftmost derivation of any string in the language.

Deterministic Pushdown Automata and Deterministic
Context Free Languages:
A deterministic pushdown accepter(dpda) is a pushdown
automaton that never has a choice in its move
Definition:
A pushdown automaton M = (Q, Σ, Γ, δ, q0, z, F) is said to
be deterministic if it is an automaton as described above with
the added restriction that for every q ∈ Q and a ∈ Σ ∪ {ε}
and b ∈Γ

1. δ(q, a, b) contains at most one element
2. δ(q, ε, b) is not empty, then δ(q, c, b) must be empty for

every c ∈ Σ

The first of these conditions requires that for any given
input symbol and any stack top, at most one move can be
made.
The second condition is when an ε-move is possible for
some configuration, no input-consuming alternative is
available.
Note that we want to retain ε-moves; since the top of the
stack plays a role in determining the next move, the
presence of ε-move does not imply non determinism.

A language L is said to be a deterministic context free
language if and only if there exists a dpda M such that L
=L(M).

The importance of deterministic context free languages
lies in the fact that they can be parsed efficiently. If we
view the pushdown automaton as a parsing device, there
will be no backtracking, so we can easily write a computer
program for it.

The pumping lemma is an effective tool for showing that
certain languages are not regular. Similar pumping
lemmas are used for other language families.

A pumping lemma for Context-Free Languages:

The pumping lemma for context free languages states that
every context free language has a special value called the
pumping length such that all longer strings in the language
can be “pumped”. This means that the string can be divided
into five parts so that the second and the fourth parts may be
repeated together.

Theorem:

If A is a context language, then there is a number p(the
pumping length) where, if s is any string in A of length at
least p, then s may be divided into five pieces s= uvxyz
satisfying the conditions:

1. for each i ≥ 0, uvixyiz ∈ A
2. |vy| > 0 and
3. |vxy| ≤ p

When s is being divided into uvxyz, condition 2 says that
either v or y is not the empty string.

The pumping lemma is useful in showing that a language
does not belong to the family of context-free languages.

Show that the language L = {anbncn: n ≥ 0} is not context
free.
Let’s pick m, we pick the string ambmcm which is in L.

If we choose vxy to contain only a’s, then the pumped string
is bmcm which is not in L.
If we choose a decomposition so that v and y are composed
of an equal number of a’s and b’s then the pumped string
akbkcm with k≠m is not in the language.
So L = {anbncn: n ≥ 0} is not context free.

