
Trees and Search Strategies
and Algorithms --

Trees and Search Strategies
and Algorithms --

Reference: Dr. Franz J. Kurfess
Computer Science Department

Cal Poly

Basic Search StrategiesBasic Search Strategies

– depth-first
– breadth-first

• exercise
– apply depth-first to finding a path from this

building to your favorite “feeding station”
(McDonalds, Jason Deli, Pizza Hut)

• is this task sufficiently specified
• is success guaranteed
• how long will it take
• could you remember the path
• how good is the solution

MotivationMotivation

• search strategies are important methods
for many approaches to problem-solving

• the use of search requires an abstract
formulation of the problem and the
available steps to construct solutions

• search algorithms are the basis for many
optimization and planning methods

ObjectivesObjectives

• formulate appropriate problems as search tasks
– states, initial state, goal state, successor functions

(operators), cost
• know the fundamental search strategies and

algorithms
• breadth-first, depth-first,

• evaluate the suitability of a search strategy for a
problem
– completeness, time & space complexity, optimality

Problems

– solution
• path from the initial state to a goal state

– search cost
• time and memory required to calculate a solution

– path cost
• determines the expenses of the agent for

executing the actions in a path
• sum of the costs of the individual actions in a path

– total cost
• sum of search cost and path cost
• overall cost for finding a solution

Traveling Salesperson
• states

– locations / cities
– illegal states

• each city may be visited only once
• visited cities must be kept as state information

• initial state
– starting point
– no cities visited

• successor function (operators)
– move from one location to another one

• goal test
– all locations visited
– agent at the initial location

• path cost: distance between locations

Searching for Solutions

• traversal of the search space
– from the initial state to a goal state
– legal sequence of actions as defined by successor

function (operators)
• general procedure

– check for goal state
– expand the current state

• determine the set of reachable states
• return “failure” if the set is empty

– select one from the set of reachable states
– move to the selected state

• a search tree is generated

Search Terminology
• search tree

– generated as the search space is traversed
• the search space itself is not necessarily a tree, frequently it is a

graph
• the tree specifies possible paths through the search space

– expansion of nodes
• as states are explored, the corresponding nodes are expanded by

applying the successor function
– this generates a new set of (child) nodes

• the fringe (frontier) is the set of nodes not yet visited
– newly generated nodes are added to the fringe

– search strategy
• determines the selection of the next node to be expanded
• can be achieved by ordering the nodes in the fringe

– e.g. queue (FIFO), stack (LIFO), “best” node w.r.t. some measure
(cost)

Example: Graph Search

S
3

A
4

C
2

D
3

E
1

B
2

G
0

1 1 1 3

1 3 3 4

5

1

2

2

• the graph describes the search (state) space
– each node in the graph represents one state in the search

space. e.g. a city to be visited in a routing or touring problem

• this graph has additional information
– names and properties for the states (e.g. S, 3)
– links between nodes, specified by the successor function

• properties for links (distance, cost, name, ...)

Breadth
First

Search
S
3

A
4

C
2

D
3

E
1

B
2

G
0

1 1 1 3

1 3 3 4

5

1

2

2

S
3

5

A
4

D
3

1

1

33

4

2

C
2

D
3

G
0

G
0

G
0

E
1

G
0

1

1

3

3

4

2

C
2

D
3

G
0

G
0

E
1

G
0

1

3

B
2

1

3

C
2

D
3

G
0

G
0

E
1

G
0

1

3

4 E
1

G
0

2 4

3 3

4

Graph
and Tree

S
3

A
4

C
2

D
3

E
1

B
2

G
0

1 1 1 3

1 3 3 4

5

1

2

2

S
3

5

A
4

D
3

1

1

33

4

2

C
2

D
3

G
0

G
0

G
0

E
1

G
0

1

1

3

3

4

2

C
2

D
3

G
0

G
0

E
1

G
0

1

3

B
2

1

3

C
2

D
3

G
0

G
0

E
1

G
0

1

3

4 E
1

G
0

2 4

3 3

4

• the tree is
generated by
traversing the
graph

• the same node in
the graph may
appear
repeatedly in the
tree

• the arrangement
of the tree
depends on the
traversal strategy
(search method)

• the initial state
becomes the root
node of the tree

• in the fully
expanded tree,
the goal states
are the leaf
nodes

Greedy
SearchS

3

A
4

C
2

D
3

E
1

B
2

G
0

1 1 1 3

1 3 3 4

5

1

2

2
S
3

5

A
4

D
3

1

1

33

4

2

C
2

D
3

G
0

G
0

G
0

E
1

G
0

1

1

3

3

4

2

C
2

D
3

G
0

G
0

E
1

G
0

1

3

B
2

1

3

C
2

D
3

G
0

G
0

E
1

G
0

1

3

4 E
1

G
0

2 4

3 3

4

A*
SearchS

3

A
4

C
2

D
3

E
1

B
2

G
0

1 1 1 3

1 3 3 4

5

1

2

2

S
3

5

A
4

D
3

1

1

33

4

2

C
2

D
3

G
0

G
0

G
0

E
1

G
0

1

1

3

3

4

2

C
2

D
3

G
0

G
0

E
1

G
0

1

3

B
2

1

3

C
2

D
3

G
0

G
0

E
1

G
0

1

3

4 E
1

G
0

2 4

3 3

4

General Search Algorithm
function TREE-SEARCH(problem, fringe) returns solution

fringe := INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)

loop do

ifEMPTY?(fringe) then return failure

node := REMOVE-FIRST(fringe)

if GOAL-TEST[problem] applied to STATE[node] succeeds

then return SOLUTION(node)

fringe := INSERT-ALL(EXPAND(node, problem), fringe)

• generate the node from the initial state of the problem
• repeat

– return failure if there are no more nodes in the fringe
– examine the current node; if it’s a goal, return the solution
– expand the current node, and add the new nodes to the fringe

General Search Algorithm
function GENERAL-SEARCH(problem, QUEUING-FN) returns solution

nodes := MAKE-QUEUE(MAKE-NODE(INITIAL-STATE[problem]))

loop do

if nodes is empty then return failure

node := REMOVE-FRONT(nodes)

if GOAL-TEST[problem] applied to STATE(node) succeeds

then return node

nodes := QUEUING-FN(nodes, EXPAND(node,
OPERATORS[problem]))

end

Note: QUEUING-FN is a function which will be used to specify the search method

Evaluation Criteria
• completeness

– if there is a solution, will it be found
• time complexity

– how long does it take to find the solution
– does not include the time to perform actions

• space complexity
– memory required for the search

• optimality
– will the best solution be found

main factors for complexity considerations:
branching factor b, depth d of the shallowest goal node, maximum path
length m

Search Cost

• the search cost indicates how expensive it
is to generate a solution
– time complexity (e.g. number of nodes

generated) is usually the main factor
– sometimes space complexity (memory usage)

is considered as well
• path cost indicates how expensive it is to

execute the solution found in the search
– distinct from the search cost, but often related

• total cost is the sum of search and path
costs

• all the nodes reachable from the current
node are explored first
– achieved by the TREE-SEARCH method by

appending newly generated nodes at the end
of the search queue

function BREADTH-FIRST-SEARCH(problem) returns solution

return TREE-SEARCH(problem, FIFO-QUEUE())

Breadth-First

depth of the treed
branching factorb

yes (for non-
negative path
costs)

Optimality
yes (for finite b)Completeness
bd+1Space

Complexity

bd+1Time Complexity

Breadth-First Snapshot 1
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

Fringe: [] + [2,3]

Breadth-First Snapshot 2
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [3] + [4,5]

Breadth-First Snapshot 3
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

Fringe: [4,5] + [6,7]

Breadth-First Snapshot 4
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9

Fringe: [5,6,7] + [8,9]

Breadth-First Snapshot 5
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11

Fringe: [6,7,8,9] + [10,11]

Breadth-First Snapshot 6
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13

Fringe: [7,8,9,10,11] + [12,13]

Breadth-First Snapshot 7
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

Fringe: [8,9.10,11,12,13] + [14,15]

Breadth-First Snapshot 8
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17

Fringe: [9,10,11,12,13,14,15] + [16,17]

Breadth-First Snapshot 9
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19

Fringe: [10,11,12,13,14,15,16,17] + [18,19]

Breadth-First Snapshot 10
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21

Fringe: [11,12,13,14,15,16,17,18,19] + [20,21]

Breadth-First Snapshot 11
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

Fringe: [12, 13, 14, 15, 16, 17, 18, 19, 20, 21] + [22,23]

Breadth-First Snapshot 12
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25

Fringe: [13,14,15,16,17,18,19,20,21] + [22,23]

Note:
The goal node
is “visible”
here, but we can
not perform the
goal test yet.

Breadth-First Snapshot 13
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27

Fringe: [14,15,16,17,18,19,20,21,22,23,24,25] + [26,27]

Breadth-First Snapshot 14
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29

Fringe: [15,16,17,18,19,20,21,22,23,24,25,26,27] + [28,29]

Breadth-First Snapshot 15
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [15,16,17,18,19,20,21,22,23,24,25,26,27,28,29] + [30,31]

Breadth-First Snapshot 16
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [17,18,19,20,21,22,23,24,25,26,27,28,29,30,31]

Breadth-First Snapshot 17
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [18,19,20,21,22,23,24,25,26,27,28,29,30,31]

Breadth-First Snapshot 18
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [19,20,21,22,23,24,25,26,27,28,29,30,31]

Breadth-First Snapshot 19
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [20,21,22,23,24,25,26,27,28,29,30,31]

Breadth-First Snapshot 20
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [21,22,23,24,25,26,27,28,29,30,31]

Breadth-First Snapshot 21
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [22,23,24,25,26,27,28,29,30,31]

Breadth-First Snapshot 22
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [23,24,25,26,27,28,29,30,31]

Breadth-First Snapshot 23
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [24,25,26,27,28,29,30,31]

Breadth-First Snapshot 24
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [25,26,27,28,29,30,31]

Note:
The goal test is
positive for this
node, and a
solution is
found in 24
steps.

• continues exploring newly generated
nodes
– achieved by the TREE-SEARCH method by

appending newly generated nodes at the
beginning of the search queue

• utilizes a Last-In, First-Out (LIFO) queue, or stack

function DEPTH-FIRST-SEARCH(problem) returns solution

return TREE-SEARCH(problem, LIFO-QUEUE())

Depth-First

maximum path lengthm
branching factorb

noOptimality
noCompleteness
b*mSpace Complexity
bmTime Complexity

Depth-First Snapshot
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [3] + [22,23]

Depth-First vs. Breadth-First

• depth-first goes off into one branch until it
reaches a leaf node
– not good if the goal is on another branch
– neither complete nor optimal
– uses much less space than breadth-first

• much fewer visited nodes to keep track of
• smaller fringe

• breadth-first is more careful by checking
all alternatives
– complete and optimal
– very memory-intensive

