Trees and Seaich Stirategies
aind Algorithms; -~

Reference: Dr. Franz J. Kurfess
Computer Science Department
Cal Poly

Basic Seanch Strategies

— depth-first
— breadth-first

e exercise

— apply depth-first to finding a path from this
building to your favorite “feeding station”
(McDonalds, Jason Deli, Pizza Hut)

* |s this task sufficiently specified
* |S success guaranteed

* how long will it take

e could you remember the path

* how good is the solution

Motivatiomn

e search strategies are important methods
for many approaches to problem-solving

e the use of search requires an abstract
formulation of the problem and the
available steps to construct solutions

e search algorithms are the basis for many
optimization and planning methods

o formulate appropriate problems as search tasks

— states, initial state, goal state, successor functions
(operators), cost

 know the fundamental search strategies and

algorithms
» breadth-first, depth-first,

« evaluate the suitability of a search strategy for a

problem

— completeness, time & space complexity, optimality

Problems

— solution
« path from the initial state to a goal state

— search cost
« time and memory required to calculate a solution

— path cost

» determines the expenses of the agent for
executing the actions in a path

e sum of the costs of the individual actions in a path
— total cost

e sum of search cost and path cost
 overall cost for finding a solution

Traveling Salesperson

states
— locations / cities

— illegal states
e each city may be visited only once
* visited cities must be kept as state information

Initial state
— starting point
— No cities visited

successor function (operators)
— move from one location to another one

goal test
— all locations visited
— agent at the initial location

path cost: distance between locations

Searching for Solutions

 traversal of the search space
— from the initial state to a goal state
— legal sequence of actions as defined by successor
function (operators)
e general procedure
— check for goal state

— expand the current state
« determine the set of reachable states
e return “failure” if the set is empty

— select one from the set of reachable states
— move to the selected state

e a search tree is generated

Search Terminology

e Search tree

— generated as the search space is traversed
» the search space itself is not necessarily a tree, frequently it is a
graph
* the tree specifies possible paths through the search space
— expansion of nodes

» as states are explored, the corresponding nodes are expanded by
applying the successor function

— this generates a new set of (child) nodes
 the fringe (frontier) is the set of nodes not yet visited
— newly generated nodes are added to the fringe

— search strategy

» determines the selection of the next node to be expanded

« can be achieved by ordering the nodes in the fringe

— e.g. queue (FIFO), stack (LIFO), “best” node w.r.t. some measure
(cost)

Example: Graph Search

* the graph describes the search (state) space
— each node in the graph represents one state in the search
Space. e.g. a city to be visited in arouting or touring problem
 this graph has additional information
— names and properties for the states (e.g. S, 3)

— links between nodes, specified by the successor function
e properties for links (distance. cost. name. ...)

Breadth
First
Search

Graph
and Tree

the tree is
generated by
traversing the
graph
e the same node in
the graph may
appear
repeatedly in the
tree

the arrangement
of the tree
depends on the
traversal strategy
(search method)

the initial state
becomes the root
node of the tree

in the fully
expanded tree,
the goal states
are the leaf
nodes

Greedy
Search

A*
Search

General Search Algorithm

* generate the node from the initial state of the problem

e repeat
— return failure if there are no more nodes in the fringe
— examine the current node; if it's a goal, return the solution
— expand the current node, and add the new nodes to the fringe

General Search Algorithm

Evaluation Criteria

e completeness
— If there Is a solution, will it be found
e time complexity
— how long does it take to find the solution
— does not include the time to perform actions
e Space complexity
— memory required for the search
e optimality
— will the best solution be found

main factors for complexity considerations:

branching factor b, depth d of the shallowest goal node, maximum path
length m

Search Cost

* the search cost indicates how expensive it
IS to generate a solution

— time complexity (e.g. number of nodes
generated) is usually the main factor

— sometimes space complexity (memory usage)
IS considered as well

e path cost indicates how expensive it is to
execute the solution found in the search

— distinct from the search cost, but often related
e total cost is the sum of search and path

_ - — A4

Breadth-First

e all the nodes reachable from the current
node are explored first

— achieved by the TREE-SEARCH method by
appending newly generated nodes at the end

of the search iueue

costs)

Breadth-First Snapshot 1

Initial @
Visited
Fringe
Current
Visible
Goal @

Breadth-First Snapshot 2

Initial @
Visited
Fringe
Current
Visible
Goal

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [3]

Breadth-First Snapshot 3

Initial @
Visited
Fringe
Current
Visible
Goal

Fringe: [4,5]

Breadth-First Snapshot 4

Initial @
Visited
Fringe
Current
Visible
Goal

Fringe: [5,6,7]

Breadth-First Snapshot 5

Initial @
Visited
Fringe
Current
Visible
Goal

Fringe: [6,7,8,9]

Breadth-First Snapshot 6

Initial @
Visited
Fringe
Current
Visible
Goal

Fringe: [7,8,9,10,11]

Breadth-First Snapshot 7

Initial @
Visited
Fringe
Current
Visible
Goal

Fringe: [8,9.10,11,12,13]

Breadth-First Snapshot 8

Initial @
Visited
Fringe
Current
Visible
Goal

Fringe: [9,10,11,12,13,14,15]

Breadth-First Snapshot 9

Initial @
Visited
Fringe
Current
Visible
Goal

16 17 18 19

Fringe: [10,11,12,13,14,15,16,17]

Breadth-First Snapshot 10

Initial @
Visited
Fringe
Current
Visible
Goal

16 17 18 19 20 21

Fringe: [11,12,13,14,15,16,17,18,19]

Breadth-First Snapshot 11

Initial @
Visited
Fringe
Current
Visible
Goal

16 17 18 19 20 21 22 23

Fringe: [12, 13, 14, 15, 16, 17, 18, 19, 20, 21]

Breadth-First Snapshot 12

Initial @
Visited
Fringe
Current
Visible
Goal

Note:

The goal node
Is “visible”
here, but we can
not perform the
goal test yet.

Fringe: [13,14,15,16,17,18,19,20,21]

Breadth-First Snapshot 13

Initial @
Visited
Fringe
Current
Visible
Goal

16 17 18 19 20 21 22 23 24 25

Fringe: [14,15,16,17,18,19,20,21,22,23,24,25]

Breadth-First Snapshot 14

Fringe: [15,16,17,18,19,20,21,22,23,24,25,26,27]

Initial @
Visited ()
Fringe ()
Current @
Visible ©
Goal ()

Breadth-First Snapshot 15

Fringe: [15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]

Initial @
Visited ()
Fringe ()
Current @
Visible ©
Goal ()

Breadth-First Snapshot 16

Fringe: [17,18,19,20,21,22,23,24,25,26,27,28,29,30,31]

Initial @
Visited ()
Fringe ()
Current @
Visible ©
Goal ()

Breadth-First Snapshot 17

Fringe: [18,19,20,21,22,23,24,25,26,27,28,29,30,31]

Initial @
Visited ()
Fringe ()
Current @
Visible ©
Goal ()

Breadth-First Snapshot 18

Fringe: [19,20,21,22,23,24,25,26,27,28,29,30,31]

Initial @
Visited ()
Fringe ()
Current @
Visible ©
Goal ()

Breadth-First Snapshot 19

Fringe: [20,21,22,23,24,25,26,27,28,29,30,31]

Initial @
Visited ()
Fringe ()
Current @
Visible ©
Goal ()

Breadth-First Snapshot 20

Fringe: [21,22,23,24,25,26,27,28,29,30,31]

Initial @
Visited ()
Fringe ()
Current @
Visible ©
Goal ()

Breadth-First Snapshot 21

Fringe: [22,23,24,25,26,27,28,29,30,31]

Initial @
Visited ()
Fringe ()
Current @
Visible ©
Goal ()

Breadth-First Snapshot 22

Fringe: [23,24,25,26,27,28,29,30,31]

Initial @
Visited ()
Fringe ()
Current @
Visible ©
Goal ()

Breadth-First Snapshot 23

Initial @
Visited
Fringe
Current
Visible
Goal

16 17 18 19 20 21

Fringe: [24,25,26,27,28,29,30,31]

Breadth-First Snapshot 24

Initial @
Visited
Fringe
Current
Visible
Goal

Note:

The goal test is
positive for this
node, and a
solution is
found in 24
steps.

Fringe: [25,26,27,28,29,30,31]

Depth-First

nodes

— achieved by the TREE-SEARCH method by
appending newly generated nodes at the
beginning of the search queue

o utilizes a Last-In, First-Out (LIFO) queue, or stack

Time Complexity il

Space Complexity b*m b branching factor
Completeness no m maximum path length
Optimality no

Depth-First Snapshot

Initial @
Visited
Fringe
Current
Visible
Goal

16

Fringe: [3]

Depth-First vs. Breadth-First

o depth-first goes off into one branch until it
reaches a leaf node

— not good if the goal is on another branch
— neither complete nor optimal

— uses much less space than breadth-first
e much fewer visited nodes to keep track of
e smaller fringe

e breadth-first iIs more careful by checking
all alternatives
— complete and optimal
— very memory-intensive

