
Algorithm Analysis 

 

Algorithm Definition: 

 

An algorithm is a step-by-step method of solving some problem. 

An algorithm has a finite set of instruction having the following 

characteristics: 

- Precision: The steps are precisely stated. 

- Uniqueness:  The intermediary results of each step of 

execution are uniquely defined  and depend only on the 

inputs and the results of the preceding steps 

- Finiteness: The algorithm stops after a finitely many 

instructions have been executed. 

- Input:  The algorithm receives input 

- Output:  The algorithm produces output 

- Generality : The algorithm applies to a set of inputs 

 

 

Recursion: 

 

An algorithm is recursive if it calls itself to do part of its work. For 

this to be successful, the call to itself must be on a smaller problem 

than the original one. 

A recursive algorithm has two parts 1- the base case, which 

handles  a simple input that can be solved without using recursion 

and the recursive part which contains one or more recursive calls 

to the algorithm where the parameters are in some sense closer to 

the base case. 

Summations and recurrences: 

 

Most programs contain loop constructs. When analyzing time cost 

for programs with loops, we need to add up the cost for each time 

the loop is executed. This is an example of summation.  

The following is a list of useful summations, along with their 

closed-form solutions: 
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Estimating 

Estimating can be formalized by the following three-step process: 

1. Determine the major parameters that affect the problem 

2. Derive an equation that relates the parameters to the problem 

3. Select values for the parameters and apply the equation to 

yield an estimated solution. 

 

Introduction to Algorithm Analysis: 

 

Algorithm analysis measures the efficiency of an algorithm or its 

implementation as a program, as the input size becomes large. 

Typically, we will analyze the tine required for an algorithm and 

the space required a data structure, 

Of primary consideration when estimating an algorithm 

performance is the number of basic operations required by the 

algorithm to process an input of a certain size.  

Size often refers to the number of inputs being processed. 



A basic operation must have the property that its time to complete 

does not depends on the particular value of its operands. (adding, 

comparing two integers versus summing an array of n integers) 

 

Consider a simple algorithm to solve the problem of finding the 

largest value in an array of n integers. The algorithm looks at each 

integer in turn, saving the position of the largest value seen so far. 

This algorithm is called the largest-value sequential search : 

 

int largest(int array[], int n) { 

int currlarge =0; 

for (int i =1; i <n; i++) 

 if (array[currlarge] <array[i] 

  currlarge=I; 

return currlarge; } 

Here the size of the problem is n; the number of integers stored in 

array. The basic operation is to compare an integer’s value to that 

of the largest seen so far. It is assumed that it takes a fixed amount 

of time to do one such comparison, regardless of the value of the 

two integers or their position in the array. Since  the most 

important factor affecting the running time is the size of the input, 

for a given input size n we say that the time T to run the algorithm  

is  a function of n or T(n). 

 

Let us call c the time required to compare two integers. We are not 

concerned with the time required to increment variable i, or the 

time of actual assignments. 

Therefore, a good approximation of the  total time required to run 

largest is cn, since we must make n comparisons, with each 

one costing c time. 

We say the function larges running time is  expressed by the 

equation:  T(n) = cn  

The equation describes the growth rate for the running time of the 

largest value sequential search algorithm 

 

The growth rate for an algorithm is the rate at which the cost of the 

algorithm grows as the size of the input grows. 

A growth rate of cn is referred to as linear growth rate or running 

time.  



An algorithm whose running-time equation has a highest order 

term containing a factor of n
2
 is said to be quadratic. 

 

If the term if the equation is 2
n
, we say that the algorithm  has an 

exponential growth rate. 

 

Best, Worst and Average Cases 

 

 Best-Case Time: The minimum time needed to execute the 

algorithm for a series of input all of size n. 

 

Worst-Case Time: The maximum time needed to execute  the 

algorithm for a series of input all of size n. 

 

Average-Case Time: The average time needed to execute  the 

algorithm for a series of input all of size n. 

 

Often, we are more interested in how the best-case or the worst-

case grows as the time grows. 

 

For example, suppose that the worst case time of an algorithm is:  

T(n) = 60 n
2
 + 5 n +1 

For input of size n. 

For large n, the term 60 n
2
 is approximately equal to t(n). In this 

sense, t(n) grows like 60 n
2
. 

 

 

n T(n) = 60 n
2
 + 5 n+1     60 n

2
  

10 

100 

1000 

10,000 

6051 

600,501 

60, 005,001 

6, 000,050,001 

6000 

600, 000 

60,000,000 

6,000,000,000 

 

 

 

 

When, we describe how the best case time and the worst case time 

grows as the size of the input increases, we only look for the 

dominant term and ignore the others, in other words, we can say 

that t(n) grows like n
2
  as n increases. 



We say in this case that t(n) is of order n
2
 and we write: 

t(n) =  (n
2
)  (read as t(n) is theta of  n

2
 ) 

 

Let f and g be functions with domain {1, 2, 3,…….} 

 

Big Oh Notation: 

We write:  

  f(n) = O(g(n)) 

And we say that f(n) is of order at most g(n) if there exists a 

positive constant C1 such that  

 | f(n)|     C1 |g(n)| 

 for all but a finitely many positive integers n. 

 

Omega Notation: 

We write:  

  f(n) = (g(n)) 

And we say that f(n) is of order at least g(n) if there exists a 

positive constant C2 such that  

 | f(n)|     C2 |g(n)| 

 for all but a finitely many positive integers n. 

 

Theta Notation: 

 

We write:  

  f(n) =  (g(n)) 

And we say that f(n) is of order g(n) if f(n) = O(g(n))  and f(n) = 

(g(n)). 

 

Finding the Theta function of a function: 

 

In order to find the Theta function of a function f(n), we need to  

find two constants C1 and C2 so that  

 

| f(n)|     C1 |g(n)| and  | f(n)|     C2 |g(n)|  

with g(n) = n
2
 

 

 

Example: 

 



Finding C1 

60 n
2
 + 5 n +1   60 n

2
 + 5 n

2
 + n

2
 = 66 n

2 
  for n  1 

 

So we can take C1 = 66 

 

   60 n
2
 + 5 n +1 = O (n

2
) 

 

 

Finding C2 

60 n
2
 + 5 n +1    60 n

2 

So we can take C2 = 60 

 

60 n
2
 + 5 n +1 = (n

2
) 

 

 

Since    60 n
2
 + 5 n +1 = O (n

2
) and  60 n

2
 + 5 n +1 = (n

2
)  we say 

that  

60 n
2
 + 5 n +1 = (n

2
) 

 

This method can be used to show that a polynomial in n of degree 

k with non negative coefficient is  (n
k
). 

 

Classes of Problems: 

 

- A problem that can be solved with polynomial worst-case 

complexity is called tractable. 

- Problems of higher complexity are called intractable. 

- Problems that no algorithm can solve are called unsolvable. 
 

Additional Resources: 
 
http://www.cc.gatech.edu/~bleahy/cs1311/cs1311lecture23wdl.ppt. 


